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The research program has as its primary purpose, the development
of techniques and systems for understanding images. Five tasks are
reported: Image Understanding Projects, Igage Processing Projects,
Smart Sensor Projects, Recent Ph.D. Dissertations, and Recent Institute
Personnel Publications. The image understanding tasks reported on
include comparison of region growing versus boundary ‘delineated
segmentation, analytic results on the clustering segmentor, development
of feature extractors for edge detection, circle detection, line
detection, and texture detection and higher level image understanding
for an interactive user system as well as a system for sharing informa-
tion between exiltinz image understanding programs ., The image
grocelling projects include degrees of freedom analfxses for radar images

lind a posteriori Yhane restoration, psychovisual elling for image
rate distortion analysis, and optical processing procédures for on-axis
holographic filtering and c¢ptical pseudocoloring of texture informationm.
The smart sensor pro?cct describes testing of the Sobel circuit and
fabrication of the spatially variant circuit. Recent Ph.D. disserta-

DD .14 D




Nec sty Clessitization

KEY WOROSY

LINK A LINS O

LINK C

ROL &

wT POLE wT

HOLE ve

tions are discussed in the following
section, the report concluding with
listings of recent publications.

Fedededededededede e s sk sk e ek e de e e de e e e e e ke e ok e e e ek e

Key Words: Digital Image Processing,
Image Restoration, Degrees of Freedom,
Scene Analysis, Image Understanding, Edge
Detection, Image Segmentation, CCD Arrays,
CCD Processors.

UNCLASSIFIED

Security Classilication

e e i i~ K S, i i o~~~




&
&
i
5

4

ABSTRACT

This technical report summarizes the image
understanding, smart sensor, and image processing research
activities performed by the Image Processing Institute at
the University of Southern California during the period of 1
April 1977 through 30 September 1977 under Contract Number
F-33615-76-C-1203 with the Advanced Research Projects Agency
Information Processing Techniques Office.

The research program has as its primary purpose, the
development of techniques and systems for understanding
images. Five tasks are reported: Image Understanding
Projects, Image Processing Projects, Smart Sensor Projects,
Recent Ph.D. Dissertations, and Recent Institute Personnel
Publications. The image understanding tasks reported on
include comparison of region growing versus boundary
delineated segmentation, analytic results on the clustering
segmentor, development of feature extractors for edge
detection, circle detection, 1line detection, and texture
detection and higher 1level image understanding for an
interactive user system as well as a system for sharing
information between existing image understanding programs.
The image processing projects include degrees of freedom
analyses for radar images, blind a posteriori phase
restoration, psychovisual modelling for image rate
distortion analysis, and optical processing procedures for
on-axis holographic filtering and optical pseudocoloring of
texture information. The smart sensor project describes
testing of the Sobel circuit and fabrication of the
spatially variant circuit, Recent Ph.D. dissertations are
discussed in the following section, the report concluding
with listings of recent publications.
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1. Research Overview

This document represents the fourth semiannual report
funded under the current ARPA Image Understanding contract.
Research over the past six months (and, in fact, past two
years) has been devoted to three major areas. The first,
and majority of effort, has been in the area of image
understanding. The second has been the area of smart sensor
design, and the third has been the area of research in image

processing.

Image Understanding

This aspect of our research has concentrated upon both
bottom up and heterarchical methodologies for image
understanding. Segmentations based on region growing and
boundary delineation have been compared to test the strength
and weaknesses of each. Analytic results of a specific
clustering segmentor are developed. Specific feature
extractors for edge detection, circle detection, line
detection, and texture detection are each investigated in
considerable detail. The emphasis of approach is somewhat
evenly distributed between the use of mathematical tools and
the use of computer science tools. At the higher levels of
the system a more sophisticated viewpoint is developed for
the heterarchical methods applied to locating structures in
aerial images. 1In addition these high level techniques are
being applied to the development of an interactive user
system for wusage by Institute personnel and visitors.
Finally, the development of an initial system for sharing
information between existing image understanding programs is
underway. It is in these latter directions that we expect
the heterarchical approach to provide fruitful results.
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Smart Sensors

This section represents the smart sensor phase of
research funded during the past six months, Two circuits
have been fabricated for CCD analog near focal plane
processing to implement a variety of front end image
processing functions. The first circuit implements the
Sobel operator on an image. This represeints a nonlinear
spatially invariant processor. The second circuit is
designed to implement both nonlinear spatially invariant as
well as variant processes. Both circuits have been
fabricated. The Sobel circuit has been tested with success,
(see accompanying section) and the second circuit if soon to
experience testing.

Image Processing

This section of the report describes the efforts
expended and results obtained over the past six months on
the various image processing projects carried out at the
Institute. Some of these projects have been funded by other
sources as indicated in the appropriate title
acknowledgements. Results of work in defining the degrees
of freedom inherent in radar imaging systems are presented
for the stripping mode of SAR. It is expected that future
radar imaging model degrees of freedom analysis will lead to
efficient radar image understanding, a task which for
humans, is far more difficult than visual image
understanding. This section also summarizes the
psychovisual modelling work being applied to image coding
and image rate distortion functions. Results in blind a
posteriori image restoration are next presented. Finally
two new optical processing procedures are described in which
on-axis holographic optical filtering is developed, and
optical pseudocoloring of texture information is described.




Finally a report of recent Institute Ph.D.
dissertations is included as well as the listing of recent
Institute personnel publications in the open literature,




2. Image Understanding Projects

This aspect of our research has concentrated upon both
bottom up and heterarchical methodologies for image
understanding. Segmentations based on region growing and
boundary delineation have been compared to test the strength
and weaknesses cf each. Analytic results of a specific
clustering segmentor are developed. Specific feature
extractors for edge detection, circle detection, line
detection, and texture detection are each investigated in
considerable detail. The emphasis of approach is somewhat
evenly distributed between the use of mathematical tools and
the use of computer science tools. At the higher levels of
the system a more sophisticated viewpoint is developed for
the heterarchical methods applied to locating structures in
aerial images. In addition these high level technigues are
being applied to the development of an interactive user
system for usage by 1Institute personnel and visitors.
Finally, the development of an initial system for sharing
information between existing image understanding programs is
underway. It is in these latter directions that we expect
the heterarchical approach to provide fruitful results.




2.1 A Comparison of Some Segmentation Techniques

Ramakant Nevatia and Keith Price

Segmentation is, of course, a key component in the
Image Understanding process. The numerous segmentation
techniques may be viewed as being either edge based or
region based. The edge based techniques start by detection
of 1local discontinuities in some attribute, such as
brightness of an image and attempt to construct object
boundaries from them. The region based techniques attempt
to find areas in the image over which one or more attributes
are constant.

It may be that in some sense the two techniques are
trying to compute similar functions and that they should be
capable of achieving similar per formance. However, at the
present state of development of these methods, one or the
other technique may be more successful on certain kinds of
images. This is a subject of active discussion among
researchers in the field, but we are unaware of any
comparative studies.

In the section, results of processing two selected,
black and white pictures using the two classes of techniques
are presented that lead to some expected conclusions about
their suitability for different tasks. The edge based
technique is that developed at the University of Southern
California (1-2], and the region based technique is that of
Ohlander [3]), modified by K. Price [4), and developed at
Carnegie-Mellon University.

A brief review of the two segmentation techniques used
is provided here.
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a) An Edge Based Method - In this method, a 1local edge
operator is applied to an image first. The resulting edges
are then linked in straight line segments and only segments
of a minimum length or above are preserved (for details see
(11). It is hypothesized that such segments usually
correspond to the desired boundaries.

The linking method is independent of the edge operator
used. However, the final per formance is obviously
determined by the output of the 1local edge operator. We
have used a Hueckel edge detector [5] in previous
exper iments. This edge detector is believed to have
superior performance to many simpler edge detectors, but it
is not always effective in the presence of texture. A
simple edge detector, which consists of convolving an image
with elongated edge masks in various directions and choosing
the maximum was developed and found to perform well (for
details, see [2]). This edge detector has been used in
results presented later.

b) A Region Based Method - The OChlander segmenter operates
by computing histograms of various image attributes and
segmenting the image into regions with a certain range of
values of an attribute, The attribute with the best
separation (a bimodel distribution in the histogram) is
chosen for segmentation. Originally, the method was
developed for color images. We have used only black and
white images here and.only the intensity attribute was used.

This technique is recursively applied to the segmented
regions until regions become too small or cannot be further
segmented according to established criteria of histogram
separations. Regions smaller than a selected size are
ignored. Therefore, long thin regions which are broken into




several smaller regions may be lost.

Experimental Results

The two test images are shown in fiqures la and 2a.
Figures 1b and 2b show the edges detected in the two images.
Figures 1lc and 2c show the regions detected by the
Ohlander-Price segmenter. (Results of linking edges in line
segments are not shown).

Following are some observations on the relative merits
of the two approaches.

a) The performance on the simpler picture of the truck of
figure 1 is comparable. The edge segmentation can be more
sensitive, as in separating the front and top surface of the
truck, but the boundary is fragmented into several segments.
Region methods always give closed regions, by definition,
which may be easier to handle for some types of objects or
processing. Note that both methods fail to separate the
bush and truck top surface.

b) In the more complex aerial picture, the edge technique
seems to extract linear features, such as roads, with ease,
whereas the region method does the same for parts of the
image that are homogeneous, for example, the lakes in figure
2. Note that the major vertical road is not extracted as a
region in figure 2b, but is only indicated by the boundaries
of the regions on two sides of it.

¢) The more complex parts of the aerial pictures are not
adequately analyzed by either technique, for example, the
lower part of the river of the suburban areas in figure 2.
The main difficulty seems to be due to the presence of
texture and fine detail.




(a) Digit® .ed

(b) Detected edges

image

(c) Segmented regions

Figure 1. A Truck
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(a) Digitized image

(b) Detected edges

Figure 2.

(c) Segmented regions

An Aerial Picture



Conclusions

Interestingly, the two methods perform similarly on
large areas of the tested images. However, specific
structures are handled better with one or the other. The
clear implication is that a complete Image Understanding
system should utilize both depending on its goals. A
straightforward method is to use a specific technigue to
locate particular types of objects.

The two segmentation techniques may also be able to
reinforce each other at the image level, for example, using
regions to bridge gaps in boundary segments or to use
boundary segments to sub-divide regions. We have not
examined such interaction in depth.

References
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January 1971, pp. 113-125.

2.2 Locating Structures in Aerial Images

Ramakant Nevatia and Keith Price

Introduction

Analysis of aerial images is, in general, a complex
task. The reasons for such complexities are many and
varied. A prime cause is the presence of texture which
causes difficulties for the low level processes such as edge
detection and segmentation. Another source of difficulty is
that the desired objects and structures may be small
compared to the size of a complete image. A detailed
analysis of a complete high resolution aerial image is
generally prohibitive because of the computational costs.

For many applications, however, a complete and general
analysis is unnecessary. Specific structures of interest
may have special properties, known a priori, that allow for
their easy extraction. The problem of searching for small
structures is helped by locating them by their spatial
relationships to larger, more easily located structures.

In previous work, we compared two segmentation
technigues, the edge based and the region based methods, and

concluded that one or the other may be suited for extraction
of particular types of structures [1l]. This describes our

initial attempts to use both techniques, taking advantage of
their respective strong points.

-11-




Problem Description and Representation

The problem approached is that of finding user
specified structures in aerial images. The user specifies
the properties useful for the 1location of the desired
structure and also of other related structures. (An
interactive, gquestion-answer dialog system is being
developed to facilitate interaction with a user, see [2].)
This amount of a priori knowledge is likely to be available
in many applications of guidance and photo-interpretation.

The a priori information is stored as properties of
objects and their ielationships to each other, and may be
viewed as constituting a graph structure with the objects as
nodes and relationships as arcs. The properties and
relationships will, in general, need to be unrestricted.
Currently, an object is described either by a collection of
line segments or by its region properties. The segments are
described by their 1length and width. The regions are
described by properties such as brightness (color) and
simple shape measures (area, perimeter, ratio of area to
perimeter squared, elongation, etc.).

The relationships used are those of relative locations
of the different objects and the symbolic relationships of
left, right, above and below. Other relationships such as
symmetry and similarity are obviously useful, but have not
been implemented.

Our representation and use of knowledge is similar to

that described by Tenenbaum (3]. The principal difference
is in Tenenbaum's use of single pixel attributes to uniquely

distinguish objects (in a given context). We use object
attributes to aid in the segmentation of the image and then

-12-
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use the attributes of larger, segmented parts for
recognition.

Feature Extraction and Segmentation

Feature extraction and segmentation is guided by the
properties of the desired objects to be extracted. Thus, an
edge detection-line finding process is applied to extract
desired 1linear segments (such as roads) and a region
segmentor for extracting areas uniform in some property (for
example lakes and other bodies of water).

Consider the aerial image shown in figure 1 (the
displayed image contains 352 x 352 pixels, an image of twice
the resolution is also used in the analysis). Here, an
objective may be to locate the dock structure and perhaps
some ships in it. As this structure consists of relatively
small parts and ic complex, it may be easier to extract
related structures such as the river, the major highway and
the lakes first, and use these to concentrate the search for
docks to a smaller area of the image. (We assume such
information is supplied by the user. No attempt has been
made to automate the strategy generation process, as in
(4]).)

Edge detection processes are appropriate for the
extraction of the desired roads. Figure 2 shows the results
of applying a Hueckel edge detector [5] on the image of
figure 1 and 1linking the resulting edge segments in
elongated segments [6]). The road is known to be narrow
enough that the edges corresponding to it are of the "line"
type (as contrasted with a step edge). Restricting the
linked edges to be only of line type results in fewer
segments (shown in figure 2).

alge




Figure 1. An aerial picture.
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The lakes and parts of the river are conveniently
extracted by using the Ohlander-Price Segmentor [7]. It is
known that the desired objects are relatively dark and
uniform in intensity, and the dark peak in the intensity
histogram should be used for segmentation. The completed
segmentation is shown in figure 3.

Matching of Segments

The next step is to match the derived line segments and
regions with a model of the image. This phase of our work
is in progress and experimental results are expected to be
available soon. Assuming that the derived segments are
distinctive enough to be easily distinguished, approximate
location of the dock structures can be predicted. Now,
sensitive line detectors should help locate the piers of the
dock. (We have found the Hueckel edge detector to be
deficient in locating small edges, perhaps because of the
large neighborhood size used. Development of more sensitive
edge and line detectors is being carried out concurrently,
see (8].)

Conclusions

Some results of processing a complex, aerial image
using both the 1line and the region based techniques have
been shown. It appears that the use of simple techniques,
specifically suited to particular objects in an image, may
allow useful processing of rather complex images. This work
is in initial stages of development and the array of
segmentation attributes is limited. While it is hoped that
the described techniques have general applicability, our
experience with real images is, as yet, limited.

-15-
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2.3 An Interactive User System

Keith Price

One major problem with the several subsystems at the
Image Processing Institute is that there is no way to easily
run these programs. All these systems require program
specific inputs which are meaningful only to the programmer.
We have implemented an initial system which is intended to
partially eliminate this problem. This system asks
guestions which are necessary to obtain the information
needed to operate the program so that it acquires the proper
information. The system is then able to initiate the
execution of the subsystem and give the input that has been
specified by the user's answers.

This program is not developed to the extent of systems
such as MYCIN for medical analysis [1] or PROSPECTOR for
geological analysis [2]. This program is intended to
provide an inexperienced user with a guide to the
information that is reguired by various programs, not deduce
an interpretation.

For a program, or the set of programs, a user must
provide a set of questions that may be asked. Each of the
questions has a set of valid responses with actions for each
response. These questions, responses, and actions are given
in a file, not compiled, thus modification of the individual
questions or changing the entire set of questions is
simplified. The actions may include new guestions which are
necessary because of the answer, e.g. 1if the question is
about the type of segments which are desired, and the user

I St . O b
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indicates "lines" then the questions dealing with region
based segmentations are not necessary and those dealing with
line extraction must be asked. Actions also include
remembering the program inputs that are specified by the
user's answer. Some special operations such as running the
specific program are compiled rather than included in the
guestion-response file.

The future goals for this, or a similar system, are to
learn how a wuser would solve particular problems, how
certain types of objects might be specified and to allow
interaction with the several distinct subsystems which are
used in the image understanding task. The user should be
allowed to modify or add to the legal gquestions, responses,
or actions so that the user can request the segmentation of
a particular object after describing it once rather than
describing the method in detail each time. Currently a
small set of gquestions are available for segmentation and
matching operations.

References
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2.4 An Initial System for Sharing Information Between 1Image
Understanding Programs

Keith Price

This is a report on the initial efforts to allow easier
interaction of a wuser between several different programs
working on the same problem. The system allows the user to
interact with several programs operating in parallel on one
or more problems and to share information between programs.

The TENEX system ptpvides many of the features
necessary for this system. A program can create an inferior
fork, start another program running in this fork, and also
continue running itself. The program in the inferior fork
does not require any modification to be run in this mode
since the superior program controls the source and
destination of all input and output which would usually go
through the user terminal. The current system allows the
user to send terminal input to a specific fork or connect to
a particular fork so that all terminal input go directly to
that fork.

Sharing of a portion of the address space to programs
and inferior forks is also provided by the TENEX monitor. A
program can map certain pages, a page is the basic TENEX
unit for storage allocation, of its core area or a file into
other pages in the program address space. Additionally,
pages in the address space of a program in a superior fork
can be mapped into the address space of an inferior fork or
from one inferior fork to another. The mapping of pages in
the address space of one fork to the address space of
another fork means that references to addresses within a
mapped page, by the program in either fork, are references
to the same actual location.

-19-




If several programs are going to share data or other
results in this manner, then it is usually necessary to
modify these programs, since the shared data must be placed
in a particular 1location in the address space. Such data
can thus be hard to access symbolically, for example as a
simple variable, but SAIL provides a partial solution to
this problem, that is the access of this global data
symbolically. The RECORD construct in SAIL has provisions
for the user specification of the allocation method for
individual records, such as determining the address of these
records. Thus some record structures may be allocated in a
global area and referenced symbolically by several current
processes. The program in a superior fork can also access
any address in its inferior forks. This feature is more
useful as a de-bugging tool than for sharing data.

The question/answer program described elsewhere in this
report may be included as a sub-program in this system.
When that program is required to run another system, it uses
the multiple process facilities buiit into this system.

References
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2.5 Singular Value Decomposition Image Feature Extraction

William K. Pratt

The singular value decomposition (SVD) is a numerical

technique of matrix transformation by which an arbitrary
matrix can be expressed in outer product form. SVD
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expansions have been applied in the solutions of

ill-conditioned sets of linear equations [1]. There bhas

also been recent application of the SVD concept to image
restoration and coding (2]. Another application, explored
here, is the use of the SVD to extract descriptive features
from an image region for purposes of classification or
analysis.

Singular Value Matrix Decomposition

Consider an N x N matrix F of rank R. The SVD
transform of F is defined to be

S -uTry (1)

where U and V are unitary matrices and ‘Ak is a diagonal
matrix whose diagonal elements A*(l) 2 Xk(Z) 1D e 2_A¥(N)
are called the singular values of F. Since U and V are
unitary matrices, the inverse transform yields

F=ua¥yT 2)

The unitary matrix U contains columns uw composed of
eigenvectors of the symmetric matrix product ggT.
Similarly, the columns v_ of V are eigenvectors of F F. The

n

defining relations are
ULEFT Ju=-2a (3a)
VI[FTrly=a (3b)

The matrix decomposition of eq.(2) can also be expressed in
the series form

F- A9 uy vy (4)

where the sum is over the rank R of F.
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SVD Image Feature Extraction Concept

The singular values of a matrix can be considered as
descriptors or features of the matrix elements and their
inter-relationships. 1If the matrix is composed of randomly
chosen real numbers, the singular values will tend toward
equality. On the other hand, a highly structured matrix
will exhibit a few dominating singular values. Figure 1
sketches the qualitative structural relationship of the
singular values. This observation forms the basis for
utilization of the SVD as a means of forming image features.
An SVD expansion is formed over a block of N x N pixels, and
some measure of the skewness of the singular value
distribution is formed to characterize the spatial
"coherence" of the pixel values. This vague concept will be
solidified shortly.

Deterministic Properties

Certain deterministic image patterns possess SVD
expansions that can be easily computed. For example, an
array of unit value pixels can be generated by the outer
product expansion

. -
5 LT e ¢ S b i
1 ) o B RS |
sl o A , (5)
_IJ Ll | e 1-
Such a matrix is of unit rank, and therefore, possesses only
one non-zero singular value. A matrix containing

alternating vertical stripes of zeroes can be formed by the
single outer product expansion
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Horizontally striped arrays can be generated by reversing
the positions of the vectors in eg.(6). The reason that the
arrays of egs.(5) and (6) have only one non-zero singular
value 1{is that their rows are linearly dependent, in fact
identical. Hence, any array with repeated rows (or columns)
will possess only one non-zero singular value. This class

includes striped arrays of various periods and arrays with
single horizontal or vertical line strokes.

A checkerboard array of ones and zeroes cahn be
generated by the sum of two outer products

St fro1w . . .14]  Jolferor .. . 0i]
0 1
1 0
0 1
+
1 0
boJ le
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and therefore, possesses two non-zero singular values.
Finally, an N x N identity matrix with ones down its main
diagonal and zeroes elsewhere is a rank N matrix and has N
equal singular values.

These simple deterministic examples illustrate some
interesting points. First, the SVD expansion is invariant
to the period of striped horizontal and vertical patterns.
In fact, a constant amplitude array, which can be considered
an array with a 1008 duty cycle period, has the same number
of non-zero singular values (one) as a striped matrix with
single pixel stripes. As a conseguence, the SVD is clearly
not useful as a measure of periodic structure. The second
major point of the examples is that rotation of a pattern
affects the number of singular values. A checkerboard
pattern consisting of diagonal stripes possesses two
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non-zero singular values, while horizontally or vertically
striped arrays only have one non-zero singular value. As an
even more extreme example consider the N x N diagonal matrix
with a single diagonal line. It has’ N identical singular
values. But, an array with a single pixel vertical line
possesses one non-zero singular value.

The conclusion of these observations is that the
singular value distribution is not well suited for the
characterization of deterministic 1line, spot, or shape
structure. But rather, the SVD does provide an indication
of the structural dependence between rows and columns of a
pixel array. This property, as will be shown, is extremely
important for the characterization of texture-like regions
of an image.

Statistical Properties

If the image block F is considered to be a sample of a
two-dimensional random process then the singular values A
as defined by eq. (1) will be random variables since the SVD
is a 1linear transformation. Attempts are underway to
determine the covariance matrix of the singular values in
terms of the covariance function of the image block.

Experimental Results

Figure 2 contains two images of natural texture, grass
and ivy, along with two artificially generated fields
obta ined by convolutional processing of two-dimensional
fields of randomly generated pixels. The subjective match
between the natural and artificial fields appears to be in
reasonable agreement. Figures 3 and 4 contain plots of the
singular values extracted from 16 x 16 pixel blocks in the
center of each image. The distributions of the natural
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(a) natural grass

(c¢) natural ivy

Figure 2. Examples of Natural
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(b) artificial grass

(d) artificial ivy
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between the actual and the ideal template in the decision
procedure. Although this assumption 1is correct for the
exact Hueckel's operator, two basic approximations have
their effect on actual results. The first is the
discretization procedure in which a continuous picture is
replaced by discrete intensities at sampling points. The
second is the use of a finite number of Fourier coefficients
in the optimization procedure. 1In this paper the effect of
these two approximations is discussed. 1In addition, some
advantages of the Hueckel operator are explained.

Effect of Continuous to Discrete Mapping

This effect is pronounced in two points. The first is
that a circular disk cannot be represented in the discrete
domain. The second point is that the orthogonal bases used
in the optimization procedure are derived in the continuous
domain, and orthogonality is not exactly valid in the
discrete domain. Although Hueckel has used averaging
methods to reduce the previous effects, it is not clear that
his procedure can be better than another operator designed
completely in the discrete domain.

The Effect of Using Finite Number of Coefficients

Hueckel has used only nine coefficients in the
optimization procedure. This choice was based on the fact
that high frequency components are generally the result of
noise. To determine the effect of neglecting high frequency
components, simple edges and lines are reconstructed using
the first nine components only. Results are shown in figure
1. It appears that the resulting images differ from the
original, especially in the case of thin 1lines. This
affects the optimality of the procedure. 1In addition it is
not clear, in the case of finite number of components, that
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grass and ivy are seen to be significantly different, but

the distributions of the natural and artificial pairs are
quite close.

Summary

The results presented are quite preliminary, but very
encouraging. The SVD singular value distribution does
indeed seem to be a viable means of characterizing spatial
structure within an image block. Further work is underway
to analyze the statistical properties of the singular values
and to develop a quantitative measure of the singular value
distribution.
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2.6 Some Comments on the Hueckel Operator

Ikram E. Abdou

Introduction

The Hueckel operator is one of the classical methods
for edge detection [1,2]. It has been considered as an
optimum method (3] because it uses the mean square error
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equal weighing of the error in different components result
in optimum response. Other methods are to use different
weights, or even to base the decision on each component

separately.

Advantages of Hueckel's Operator

It has been shown that the Hueckel operator 1is not
optimum, in the sense that there may exist other operators
which have better mean square error performance. However
Hueckel's operator has some nice features which can be used
in other operators.

The first 1is that Hueckel's performance is less
sensitive to parameter variation. Figure 2 shows a typical
relation between the Hueckel parameter Diff and the figure
of merit. The performance is almost constant over a wide
range of Diff. This feature 1is useful in practical
applications where it is difficult to change parameters for
each image.

The same feature can be achieved in simple masks if the
decision procedure is based on a nonlinear function of the
signal and noise. Some of results obtained are shown in
figure 3.

The second advantage of Hueckel's operator is the use
of a large mask. This reduces the effect of noise in case
of low SNR. However, large masks reduce the resolution of
the operator, and the optimum size should be a compromise
between SNR and resolution.
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Conclusion

In this paper some of the features of Hueckel's
operator are discussed. It appears that the operator is not
a standard method to which other operators should be
compared. However it has its own advantageous properties
which can be extended successfully to other edge detectors.
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2.7 Development of Edge Detectors for the Extraction of
Linear Segments

Peter Chuan

Numerous edge detectors have been suggested in the
past. However, it is not clear as to which technique is
most useful under different given conditions. Evaluation of
edge detectors on real pictures is difficult and subjective
in nature because a model for the image does not exist.
Such evaluation cannot be separated from the goals of the
processing. Here we describe an approach to the detection
of edges that correspond to long, linear boundaries.

One often used edge detector is due to Hueckel [1] and
has been extensively used in some of our previous work. For
the purpose of detecting long, linear edges, its per formance
has been poor in the presence of noise. Figures la and 1b
show a noisy image and the corresponding Hueckel edges,
respectively. Here, the Hueckel operator is shown to be
indiscriminately sensitive to all kinds of edges.

This calls for a particular edge detector tailored to
be selectively sensitive to 1long, 1linear edges. Some
crudely constructed edge detectors were used in the past [2]
and have shown encouraging results. Six directional edge
masks angularly distributed in approximately 30 degrees were
convolved with the picture of interest. An approximated 60
degree edge mask is shown in figure 2. The maximum among
the outputs of the six directional edge masks is taken and
thresholded to show strong edges only. One such result
obtained from figure la is shown in figure 3. Because the
masks are binary (excluding 0) masks, gross approximations
occur both in angular orientation and in spatial linearity
of the edge line. Moreover, such edge masks are difficult
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Figure la. Original image
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Figure 1b. Hueckel edges
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to construct and for a finite size mask, only a few
directional edge masks may be possible.

Instead of approximating edge masks of a desired angle
with binary numbers, a method 1is described for the
construction of these directional edge masks. The ideal
case for these particular 1long edge masks is to have
infinitely fine resolution edge masks so that they can be
considered as continuous signals. In the continuous domain,
masks of any angle and shape can be approximated as closely
as desired as shown in figure 4. This continuous mask
Hc(x,y) can be convolved with the continuous picture Fc(x,y)
to produce strong signals where the edges of Fc(x.y) are
long and continuous. This convolved output can be sampled
and quantized to produce our ideal discretized edge signal
Eco(men). For clarity, this process is illustrated in
figure 5a.

Since we only have the sampled and quantized version
Fq(m,n) of the continuous picture F.(x,y) to work with, the
ideal situation can only be approximated. The continuous
edge mask M (x,y) is therefore sampled and quantized and the
discrete output Hd(m,n) is convolved with Fd(m,n) instead,
to produce Edd(m,n). Again for clarity, this process is
illustrated in figure 5b.

The price paid for using this approximate process
versus the use of binary edge masks (figure 2) is in the
greater number of quantization levels needed for the edge
masks. Howeyer, the advantage gained is that this technigue
will allow the generation of directional edge masks of any
desired eize and orientation, with the possible application
being the confirmation of the presence or absence of an edge
with a certain direction or shape. Moreover, this model
also opens up the possibility of an analytical evaluation of
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edge masks. Figure 6a shows a 60 degree edge mask generated
through this model. This directional edge mask has weights
obtained by integrating the continuous edge masks (shown in
figure 6b) over an area covered by each square pixel. The
continuous edge mask is two pixels wide on each side.
Integration is carried out over each square pixel because
this is the same process that will be carried out if the
continuous mask were physically digitized by an Optronics
scanner. Figure 7 shows the edge of an airport picture
obtained by applying masks generated by this model.

One consideration in edge detection problems is on
deciding the appropriate size of edge mask to use. Given a
picture with small éignal to noise ratio, larger masks
should be allowed for detecting edges. Depending on the
Fourier bandwidth (e.g. the closeness of two edges) of the
information in the picture, the maximum mask size can be
determined that will average out the noise but retain most
of the signals. For example, comparing figures 8a and 8b,
the mask with the size shown in broken lines will work fine
in picking out edges in figure 8a but will obviously give
weaker edges in between the two circles in figure 8b. Masks
of two different sizes have been applied on a test pattern
with signal to noise ratio (Signal Energy/Variance of Noise)
equal to 2.7 and on the airport picture. Results are shown
in figure 9.

Square masks have been used conventionally for
directional edge masks. This is illustrated in figure 10.
Convolutional outputs from each of these individual masks
were then compared to extract the maximal value. It should
be realized that mask 1 and mask 2 not only have different
edge directions but as a result of this, they also have
different shapes. Comparing mask 1 with mask 2 would be
equivalent to comparing matched filter outputs using two
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Figure 7. Edges obtained from circular

weighted masks obtained from
our proposed model.
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Figure 8. The square boxes show the same edge detecting mask.
This mask is applied on both figures (a) and (b).
At the location indicated by the position of the
mask, the odﬁo output from figure (b) will be
lower than the edge output from figure (a).
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different signal detectors, which is not really justifiable.
with small mask sizes, these effects do not show marked
differences but for larger masks, it is possible that these
effects will emerge significantly. A reasonable correction
for such effects is to construct circularly shaped edge
masks and to generate the sampled quantized version of the
continuous mask. An example of this circular mask is shown
in figure 11.

7 x 7 square and circularly bounded masks (listed in
figure 13) have been used to show the effect of the
different mask shapes. This is illustrated in figure 12.
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2.8 Circle Detection in Noisy Images

Kenneth 1. Laws

This paper presents two methods of identifying circles
within a noisy or textured image. A variant of the Hough

transform method is outlined, then a new method for directed
edge elements is developed and demonstrated.
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The edges in (c) and (d) have been obtained by
applying a thinning procedure. ,‘
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A circle is characterized by its uniform boundary. The
form of a circle may be perceived by humans even if the
interior region is not uniform. It seems appropriate to
search for circles with edge detection techniques rather
than region 'growing methods.

A circle, or even a circular segment, is an extended
entity. No local property of an edge element is sufficient
to determine whether it is part of a circle. Curvature
might be a sufficient 1local property, but it is not
available from the standard edge detectors. It is the
relationship among edge points which constitutes a circle.
The edge elements must be equidistant from some center and
the direction of each, if known, must be perpendicular to a
line through that center.

True circles are also characterized by local
continuity. 1f the images of circular objects were
continuous there would be little difficulty in tracing the
boundaries. Several processes interfere, however. The
object itself may be slightly irregular, and the image may
be corrupted by noise. Conversion to digital image form
introduces guantization error. Finally, edge detectors can

be applied to the image at only a finite number of points,
and may be confused by texture in the image.

Fitting Circles Through Directed Edge Elements

Most edge detectors identify the direction of maximum
gradient at each edge point. Adding 90 degrees to this
angle gives the edge direction, d. The edge element (x,y,d)
is thus a short directed line segment at (x,y), with the
image known to be dark on one side and bright on the other.
If the image contains a bright disk, the edge elements will
circle it in a counter-clockwise (or positive) direction,
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Circles through a given (x,y,d) have centers (a,b) on
the line a cos(d) + b sin(d) = p, where
P = x cos(d) + y sin(d). Figure la shows this locus in X-Y
space. This parameterization may be made unique either by
restricting p to be positive or d to be between 0 and 180
degrees.

The Hough transform method (1,2] can be used to locate
image circles. Each edge element generates a line in A-B-R
space. The locus consists of points
({x + r sin(d),y - r cos(d),r), where the sign of r
corresponds to the circle direction. If r is restricted to
positive values, the locus also includes the 1line
(x - r sin(d),y + r cos(d),r). If edge directions are not
known the locus of an edge point is a cone in A-B-R space.

The A-B~R space is quantized to form an accumulator
array. For each edge element the counters along the
transform locus are incremented. Cells with high counts
then correspond to image circles.

The above method requires the search of a
three-dimensional transform space for clusters. The space

must be quantized finely enough to provide one cell for each
possible circle in the image. A more direct method
utilizing pairs of edge elements will now be developed. It
avoids quantization errors by searching for clusters in a

continuous space.

A circle is determined by two of its directed edge
elements, &s shown in figure 1b. A space with N edge
elements contains N(N-1)/2 possible circles -- one for each
pair of points. A typical picture may have several thousand
edge points, or millions of hypothesized circles. Simple
screening can reduce this to a manageable number of
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possibilities.

Preliminary screening is aimed at reducing the number
of edge elements. It may be possible to eliminate some
areas of che image or to consider only high contrast edges.
Edge elements which have been linked into line segments may
sometimes be excluded from further consideration.

A distance criterion helps quickly screen out edge

pairs. The distance between a pair of points should not
exceed Dmax, the 1largest diameter being sought. This

parameter is critical since further processing time is
proportional to the square of Dmax. Larger circles can be
found by line detection techniques.

An angle criterion is also wuseful. If two edge
elements are nearly parallel 1t is difficult to find the
corresponding circle parameters. The pair should be skipped
if the absolute value of either dy - 4 or dy - (4, + 180
degrees) ig less than some minimum angle.

The circle parameters determined by two points are

as= (plsin(dz) - pzsin(dl)) / DET
b = (pzcos(dl) - plcos(dz)) / DET
where
P; = xicos(di) + yilin(di),

DET = col(dl)lin(dz) - co.(dz)sin(dl).

The radius may be computed separately for each edge point:
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rj = (a - x)? + (b - yi).

If the two values differ greatly, the two edge
elements cannot be from the same circle. This fact may be
used to screen the hypothesized circle centers and
considerably reduce the number which must be processed
further.

The direction of rotation of each edge element is
another important parameter. The angle

di - a‘rctan(yi -b) / (xi - a)

; will equal +90 degrees for positive circles and -90 degrees
for negative circles. Two edge points do not belong to the
same circle if they have opposite rotations about the common
center. For line drawings these directions are not defined.
Even if defined, it may be desirable to ignore them since
disks do not always appear against uniformly darker or
lighter backgrounds.

The identification of image circles has now been
reduced to a standard clustering problem. The parameter
points corresponding to an image circle should form globular
clusters, possibly elongated in the R dimension. There is a
relationship between the radius of an image circle and the
number of edge pairs it produces, but this serves only as an
upper bound on cluster membership if circular segments are
also being sought.

Many algorithms exist for finding globular clusters.
The chosen method must be insensitive to a large number of
outliers or noise points. The method should also be fast
and use 1little memory. It should identify the number of

B
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clusters a posteriori, but need not do so hierarchically.
The clusters found should be independent of the order in
which points are given, although this is not critical.

Experimental Results

Figure 2a shows an armored personnel carrier against a
desert background. Figure 2b shows the edge elements
identified by a Hueckel operator [3]. This data base was
taken as the starting point for the circle location problem.
The image scale is considered to be 256 pixels in each
direction. '

The edge map contains 1,916 edge elements. There are
thus 1,834,570 pairs of edge points to be screened. Figure
2c shows the X-Y positions of the 523 parameter points found
by screening for 49 seconds on a PDP-10 KI. Edge pairs more
than 15 pixels apart or deviating less than 60 degrees from
each other were not considered. Radii computed for the two
elements had to be within 10 percent of each other. The
direction of rotation had to be the same for each element,
and was used to form the sign of the radius value.

Clustering was then done in the A-B-R space using a
Euclidean distance measure and a variant of Wishart's
convergent K-Means algorithm for a variable number of
clusters [4]. A circle with a radius of r pixels should
produce a cluster of approximately r2 parameter points,
depending upon the screening criteria. Clusters were only
kept if they contained more than three points and more than
0.25 * 12. Five clustering iterations were used, taking 15
seconds of computing time. Fighte 2d is a plot of the ten
circles corresponding to cluster centroids. The reference
lines in the figure were found independently by the method
of Nevatia (5].
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(a) Original Image (b) Edge Data
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(c) Hypothesized Circle Centers (d) Accepted Circles

Figure 2. Experimental Results
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The ptacticaf limit of 15 pixels for Dmax is adequate,
since 1larger circles may be found by line detection and
linking techniques. Better screening may be possible using
edge strength or even curvature information. Experiments
indicate that removal of straight segments from this data
base greatly reduces the circle finding time, but larger
circles are missed. Removal of edges belonging to circles
might similarly aid line finding programs.

Without reference back to the edge data the circles can
only be classified as complete and incomplete. Locating the
corresponding edge elements is a simple best-fit search
problem. Each set of points along a circle must be sorted
or linked, then checked for continuity. Some circles, such
as the vehicle wheels, will be dense and complete. Circles
corresponding to rounded corners can be identified as short
circular segments. Others, such as the bushes in the upper
left corner of figure 2, may be identifiable as noise
circles because of their lack of continuity.
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2.9 Analytic Results of the Coleman Segmentor

Harry C. Andrews

Automatic bottom up human unassisted image segmentation
has been developed by Coleman [1] for the 1Image
Understanding program. The system utilizes pgttern
recognition techniques in N dimensional vector séace to
per form decorrelation, clustering, feature rejection and
ultimate segmentation. The only underlying assumption for
the process is that homogeneous clusters in N space are
representative of homogeneous regions of an image in
perceptual space. The system is designed to operate with:

; any set of computable features and will automatically select
the best subset of those features to develop tightly
clustered homogeneous regions in N space which then serve to
define the segmentation of the original image. In the
interest of smart sensor implementation, the system has been
designed for frame-to-frame segmentation for real time
television-like sensors.

Segmentor Configuration

Figure 1 presents a block diagram representative of the
system design of the segmentor. The first component of the
system is the "feature computation" phase. This process
computes the features that the designer feels will be
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relevant for effective clustering. Essentially, features
are computed up to as high a resolution as at every pixel if
desired. Because the features to be computed are defined by
the user, it 1is at this phase that human intuitive and
design processes are brought to bear on the segmentation
problems. Once the human defined features are computed, the
system then becomes automatic for subsequent optimization.
The computed features (N of these) then define an N
dimensional coordinate system wherein each pixel will
subsequently represent a point in N space. Typical features
that might be computed are listed in table 1. Brightness
amplitudes for monochrome, color, and multispectral scenes
are obvious candidate features. Texture features might be
delineated by edges or other spatial frequency processors
and are listed in the table. Finally, nonlinear spatial
filtering processes might also be useful for segmentation
and this class of features is listed as well. Obviously, as
humans we can continue to generate more features as we
become more familiar with our processing goals. The only
point to be made here is that the feature computation box
will only be as clever as its designer. Subseguent to this
phase, all processes become automatic. However, note how
simple it is to generate fairly large dimensional vector
spaces at the front end of the system. It is because of
man's propensity to generate so much data that subsequent
optimization and feature rejection procedures must be
developed to efficiently and economically process such data
for ultimate segmentation purposes.

Returning to figure 1 we see that the next phase of the
segmentor configuration is a straightforward vector space
rotation (unitary transformation) defined by the
eigenvectors of the overall covariance matrix between all N
features computed over the entire image. The objective of
this phase 1is to decorrelate the features such that



FEATURE TABLE 1

FEATURE DESCRIPTION

FEATURE CLASS

monochrome brightness

green color brightness
blue color brightness

- gy e -

monochromatic amplitude

--------------------------------

color amplitude

*10

band 1 brightness

band 6 brightness

multispectral amplitude

11

Sobel magnitude on Xy
Sobel magnitude on X,

Sobel magnitude on x,

texture feature

Sobel phase on x

Sobel phase on X10

texture orientation

x40
41

%50

mode filter on X

mode filter on X0
dispersion filter on Xy

dispersion filter on X0

nonlinearly filtered feature




clustering is implemented in N dimensional decorrelated
space. In this way good features can be selected
individually and bad features rejected individually without
concern as to correlation properties with other features.
This will allow efficient compaction of good clustering
features into a few parameters thereby providing a large
dimensionality reduction. However it is important to
realize that feature reduction does not occur immediately
following the rotation process but only subsequent to
clustering analysis.

This brings us to the next step in the system which is
a k-means clustering algorithm in N dimensional rotated

space. This algorithm converges to a set of k-mean points
describing the best assignment of pixel features to
k-clusters such that the sum of within cluster distances is
the smallest. The disadvantage of the algorithm is that it
requires knowledge of the number of clusters, k, in advance.
Clearly this is unknown and conseguently the k-means
clustering routine must be implemented for all reasonable
values of k (i.e. ¥=1,,..,16). Subsequent blocks in the
figure are designed to determine the best number of cluster
and the best features to provide the tightest cluster
distributions.

Once the k-means cluster algorithm has converged to the
minimum spread of points in N space, a fidelity measure, 8,
is computed to establish the tightness of the points within
the clusters and the degree of spread or separateness of the
clusters one from another. This fidelity measure is given

by
B(k) = tx[s (k)] tr[S,(k)]

where ll.(k)) is the within cluster scatter matrix and
llb(k)l is the between cluster scatter matrix [2). It can



be shown that B is everywhere nonnegative, has at least one
maximum, and achieves that maximum where the ratio of the
within cluster scatter equals the between cluster scatter.
Therefore it is hypothesized that the optimal number of
clusters (k) occurs at g equal to its maximum. Therefore
these values of g8 and k are used to control the output
segmentor and the feature rejector.

The feature rejector provides the function of removing
those features which do not contribute to tight homogeneous
clusters. Consequently, this process borrows from
supervised pattern recognition theory in which feature
selection/rejection is often implemented through the use of
the Bhattacharyya distance function [3]. This function
provides a measure of the usefulness of a particular
dimension or feature by investigating that feature's ability
to separate the data points into the proper clusters
determined by the k-means convergence algorithm. This
measure is provided by mean and variance parameters
determined by each dimension for all the clusters. Those
features or dimensions which do not provide well-defined
clusters (due to separate means and tight variances) are
rejected, thereby leaving good features for more tightly
homogeneous clusters.

Experimental Results

A variety of images have been segmented using the above
clustering algorithm with varying degrees of perceptual
success. Figures 2 and 3 present these results in pictorial
form. Pigure 2a and 34 were original monochrome images
while figure 2d was a color image and figure 3a was a ten
band multispectral image. Various clustering results are
presented for each image for viewer inspection. The last
sequence in figure 3 represents clustering on frame-to-frame



a) Original d) Original

e) 2 Clusters

i

¢) 3 Clusters f) 3 Clusters

Figure 2. Pictorial Clustering Results



¢) 3 Clusters f) 4 Clusters (frame 5)

Figure 3. Pictorial Clustering Results
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imagery to illustrate the potential for real time hardware
smart sensor implementation.

Probably a more relevant representation of the
segmentor in operation is to view the Bhattacharyya measures
and clustering fidelity factors all as a function of k, the
number of clusters for each iteration of the - k-means
clustering algorithm. These results are presented in
figures 4 and 5. In figure 4 two plots are presented
illustrating the performance of the Bhattacharyya feature
rejector. In figure 4a the Bhattacharyya distance values
are plotted for each dimension or feature in the correlated
space for the variables {xl,xz,...,xN} from figure 1. 1In
figure 4b the Bhattacharyya distances are plotted for each
rotated dimension or feature in the decorrelated space for
the variable {yl,yz,..,yN} of figure 1. It is immediately
obvious that by decorrelating (rotating the space) one
outstanding feature results which hopefully will allow
effective clustering in a vastly reduced vector space (see
figure 2b). In addition it is obvious that the good
features (large Bhattacharyya values), tend to be good for
all cluster numbers indicating a degree of consistency which
allows feature rejection of those dimensions with small
Bhattacharyya measure with some degree of confidence.

Figure 5 indicates how the cluster fidelity parameter,
B8, behaves as the number of clusters increases.
Specifically, figure Sa indicates that for the monochrome
APC image, without feature rejection, the peak of B is quite
poorly defined because of the presence of a lot of useless
features essentially adding noise to the well-defined
clusters. However for the case of the four best features or
the single best feature, a much more marked peak results at
a lower cluster number. A similar effect occurs for the
colored house of figure 5b. However from the curves of all
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features compared to the best few features, not as dramatic
a change occurs. This is because the use of color features
provides a considerable improvement in the segmentation
power of the system compared to having only monochrome
features. This result correlates well with our intuitive
experiences in which color and multispectral signatures
provide quite useful aids for human visual segmentation
procedures.

Conclusion

The above description covers the highlights of the
segmentor developed by Coleman. The interested reader is
referred to reference [1l] for details of the system. The
algorithm represents a bottom up attempt at automatically
segmenting imagery without the aid of human intervention.
It allows any conceivable set of features to be used for
clustering but reserves the right to feature reject those
parameters which do not contribute to well-defined, tight
clusters. The technique is based upon the principles of
mathematical clustering algorithms in N dimensional vector
space. The underlying hypothesis for success of the
technique is ba sed upon the premise that tight,
well-defined, homogeneous clusters in vector space
correspond to well-defined homogeneous regions in an image.
If this premise is true, successful (i.e. consistent with
human perception) segmentation results. If unsuccessful
segmentation results, then improper features are provided in
the feature computation phase which, through the linear
operations of decorrelation and feature rejections, do not
provide proper region segments. It is then conjectured that
nonlinear transformations (or other features) are necessary.
Finally, the segmentor has been designed with smart sensor
real time implementation in mind. The hardware construction
of such a system is under contemplation.
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3. 1Image Processing Projects

This section of the report describes the efforts
expended and results obtained over the past six months on
the various image processing projects carried out at the
Institute. Some of these projects have been funded by other
sources AS indicated in the appropriate title
acknowledgements. Results of work in defining the degrees
of freedom inherent in radar imaging systems are presented
for the stripping mode of SAR. It is expected that future
radar imaging model degrees of freedom analysis will lead to
efficient radar image understanding, a task which for
humans, is far more difficult than visual image
understanding. This section also summarizes the
psychovisual modelling work being applied to image coding
and image rate distortion functions. Results in blind a
posteriori image restoration are next presented. Finally
two new optical processing procedures are described in which
on-axis holographic optical filtering is developed, and
optical pseudocoloring of texture information is described.



3.1 Synthetic Aperture Radar and Imaging System of the
Stripping Mode

Chung-Ching Chen

Introduction

. The concept of radar is relatively simple although its
implementation often is not. It is an active device which
operates by radiating electromagnetic waves and estimating
the characteristics of the target by the echoes returned
from the objects. Since its appearance in World War 1I,
radar has played a very important role in both military and
civilian applications, such as the target detection,
navigation of the ships and aircraft, etc [1]. The purposes
of the radar can be dichotomized as target detection and
parameter estimation. Detection of a target 1is the
determination of its presence in the unavoidable noisy
situation, and parameter estimation is the measuring of
characteristics of the targets, e.g., their ranges, relative
velocities, angular directions, sizes, etc, by the
extraction of available informatiorn from the received echoes
(11.

The power of an airborne or spaceborne ground mapping
radar is limited by its resolving abilities in both azimuth
and range directions, whereby azimuth is "along the flight
track" and range is that perpendicular to it on the ground.
Range resolution can be achieved by the radiation of a short
pulse and the accurate measurements of the time of its
return. Alternatively, the pulse-compression techniques can
be applied to obtain similar resolution with greatly
increased signal power [2]. Here a suitable modulation,
usually a linear F.M. or chirp signal, because of its high
efficiency in terms of time-bandwidth product, easy analysis
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and implementation, is imposed upon a CW of moderate time
duration. In this technique the large bandwidth which is
necessary for accurate range resolution is created while a
large signal power is also achieved because of the
"stretching" of the signal duration compared to short pulse
modulation, which has a large bandwidth but short time
duration. Upon receiving the echoes, the data processor
"compresses" the large time-bandwidth product pulse to reach
virtually the same range resolution. It can be shown that
the signal is essentially the point spread function (PSF) of
the radar imaging system in the range dimension. Although
the signal is long in time and thus the PSF is wide in range
space, the range resolution is not degraded because of the
high-bandwidth property of the signal. Hence the
simultaneous achievements of high resolution and large
signal power are possible. It is pointed out, however, that
because the pulse is in coded form, a decoding scheme which
in this case is pulse compression which is coherent in
principle, has to be adopted, as contrasted to noncoherent
processing for traditional range resolution schemes. The
coherent processing provides the possibility of another
point of view on the imaging system - the optical or
hologram processing.

From antenna theory it is well known that the half
power beam width B8 in radians of a physical antenna of
length L is (see figure 1)

B = 2A/L (1)

where A is the wavelength of the radiation. The 3?undwidth
projected by the half power beam is then A, =B8:R=7- where R
is the range.
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azimuth

Fig. 1. Antenna Illumination Geometry
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Traditional ground mapping radar achieves azimuth
resolution by wusing antenna with beam narrow in azimuth.
Physically speaking, the narrower the beam width, the
narrower the point spread function and thus the better
resolution obtainable. This is the same situation as
discussed in the case of uncoded short pulses used to obtain
range information. It is again noted that here the
illumination imaging is noncoherent among the patches
illuminated at different antenna locations. Thus the wider
beam width means more blurring, hence fine azimuth
resolution demands a very long physical antenna (L large in
%?), most of the time not practically available.

A comparison between the imaging schemes along range
and azimuth directions suggests that high azimuth resolution
is possible by the use of some forms of coding. However,
since the ground is two dimensional (range and azimuth)
while the signal is only one dimensional (a function of time
only) a direct simultaneous compression upon the signal
itself is not conceivable, if not impossible. One solution
is to azimuth-modulate the returned echo, instead of
modulating the signal before radiation. This 1is made
possible by the constantly changing relative location
between the ground points and the radar. The technique thus
developed is called synthetic aperture radar (SAR).

The azimuth resolution abilities can be evaluated from
another point of view. The aircraft during its flight
radiates pulses at different locations and receives their
echoes shortly after. Because of the azimuth modulation
incurred by the relative motion of the craft and ground,
coherent processing upon the received data to obtain maximum
possible resolution is required as explained earlier. This
is analogous to the case of an antenna array where the
received signals at each array element are coherently

i




processed and summed [3].

From figure 2 it is easily seen that the width of the
azimuth beam at range R gives the maximum value for the
length of synthetic aperture that can be used at that range.
Hence

Logs™RE"T (2)

is the effective length of the synthetic antenna aperture
where L 1is the azimuth size of the physical antenna.
However, since the operation of SAR utilizes the two-way
beam pattern in the sense that phase shift is introduced on
both the paths and from the target, this round-trip phase
shift effectively reduces the wavelength by a factor of 2.
Thus

A

Pate " T o (3

The azimuth resolution Ga is the effective beam width
projected on the ground at range R

6 -8 R-zrxi.-xkal‘
a Ceff ef £ E‘{-x z (4)

which is independent of X and R, and is proportional to the
azimuth size of the physical antenna. Thus to achieve
higher azimuth resolution, a shorter antenna is to be used,
in contrast to the single antenna case in eq.(l).

Basically there are three modes of ground mappings of
the SAR (4,5): spot mapping, strip mapping, and Doppler
beam-sharpening. Strip mapping is the most general one and
has received the most attention. Some of its principles
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have been given in the preceding discussion. In the
following sections we will formulate the strip mapping mode
from a system point of view.

Strip Mode of SAR

Introduction

The strip mode 1is the most general one in the
operations of SAR's. In the operation an airplane or
spacecraft flies over the ground of interest, radiates
pulses at different 1locations and records the returned
echoes. As shown in figure 3, let (x,y,z) be a rectangular
coordinate system with (x,y) being the ground, and assume
unless otherwise stated that the flight is along the x axis,
with y=0 and at constant velocity. For simplicity a
side-looking radar is also assumed, although it could as
well be squint [5]. The situation is depicted in figure 3,
where we use (xl,yl,zl) and (xz,yz,zz) to denote the
coordinates of an arbitrary target point and the aircraft,
respectively. We will assume that effect of the height of
mountains and structures on the ground are negligible and
that the curvature of the earth surface can be ignored such
that z1=0 for all the ground points to be mapped.
Furthermore we assume that the time origin coincides with
the x origin of the aircraft. Thus X =vt where v is the
constant velocity of the aircraft. As 1is generally the
case, the antenna is assumed to be shared by the transmitter
and the receiver. This necessitates the pulsed nature of
the signal waveform and inevitably creates blind ranges [1].
Echoes from targets in blind ranges reach the radar while it
is transmitting and not receiving and thus are lost. The
pulse repetition frequency (PRF) also sets an upper bound to
the maximum range without range ambiguities. For simplicity
of analysis we assume that the signal pulse train consists

-79-




(xzn sz zZ,
= (vt, 0,2

v SRR Y
ST S N T NN W

W
(xl' yl’ zl) = (xlo yln 0)

3
&
B
I
=
2
K
i
i
h

Fig. 3, Flight-path geometry




of pulses of identical waveform with equal time interval
between adjacent ones. Thus let fs(t) be the modulation
function of a single pulse centered at t=0 then the pulse
train wavefunction is

£(t) = Z £, (t-nT,)exp () t)

n= -o

(5)

where'Ts is the pulsing period and W the angular frequency
of the carrier. As described in figure 4, if the
"effective" time width of £ (t) is Tp then the length of the
time during which the transmitter is not in use between
consecutive pulses is T;-T which decides the maximum range
deviation without range ambiguities.

In addition to those factors, the depression angle V ,
which 1is the angle between the horizontal plane and the
radiated beam, and the antenna pattern also affect the
performance of the system; the geometry is depicted in
figures 5 and 6. All those parameters and their
interdependence come into the picture of the SAR imaging
system to make it extremely complicated to evaluate its
capabilities and estimate its performance accurately.
However, if we model the point spread function (PSF) of the
system in some desirable way by appropriate geometrical
considerations and abptoxinations, we will be able to
simplify the description of the system, making the
evaluation relatively easier and the reconstruction more
feasible. Of course, by so doing we also distort the system
by an inexact modelling, thus an incomplete or nonoptimal
(in some sense) reconstruction 1is to be expected. It is
obvious that the more approximations made, the more
degradation will result in the image reconstruction. 1In
this section we will give a hierarchy of the system models
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Fig. 5. Flight-path geometry - (y, z) plane
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in progressive inaccuracies. We will also tabulate the
approximations made and their justifications. We will find
that in its simplest form the system is separable
space~invariant.

Method of system evaluation

In general, gathering more data provides more
information to solve for the unknowns at the expense of
increased requirements in storage and complexity in
computation. On the other hand, intuition suggests that
after some "threshold amount"” of data 1is obtained, the
additional observations do not always provide equal amounts
of new information. This is due to the inherent "blurring"
of the imaging systems and unavoidable observation noise,
etc. Thus the concept of degrees of freedom (DOF) has
arisen to measure the number of truly independent samples of
data one gathers under a particular imaging system ([6,7].

In our system evaluation we will adopt the concept of
eigenvalues of a correlation matrix or the Gramian matrix
[(8,9]. For example, in the continuous-discrete case, we
equate the number of degrees of freedom with the number of
the eigenvalues of the Gramian matrix whose magnitudes are
larger than some threshold determined by the noise level of
the system. This is equivalent to the singular value
analysis of the system. Except for possible permutation the
singular value spectrum remains invariant regardless of
whether the object and/or the image have gone through
orthogonal transformaticn before and after the imaging
system, respectively. To show this, consider the
discrete-discrete case for the sake of ease in proof: Let H
be the matrix of the linear system and P,Q be orthogonal
matrices compatible with the dimensions of the output and
input vector sizes, respectively. Then PtP-PPt-I and
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QtQ'QQt-I where the superscript t denotes a transposition.

t t
The set of eigenvalues of PHQ(PHQ)tsPHQQthP -PHHtP is the

same set of eigenvalues of PtPHH -Hﬂt except for additional
zeroes due to possible size difference of P and Q [10].
Note that the sets of eigenvalues of PHQ and H differ in
general.

Derivation of point spread function

Referring to figure 3, 21-0, Xxo=vt, y,=0 and 2z, is
flight height. Define ground range

A 2 2
Rg " [(xl"xz) +(Y]_"Yz) ]%

= [(xl—vt)2+y%]% (6)
and slant range
R = [(x-xp) 24(y;-y) 2z -2 2]
- [(xl-vt:)2-!-y%+z§“’5

= [R§+z§ ]Js

(7)

The propagation delay associated with a point source at
(xl,yl,zl) with range R defined above is %} where the factor
2 is because of round trip to and from the target, Let
p(xl,yl) be the reflectivity function of the terrain and
A(xl,yl,xz,zz) be the illuminating pattern of the antenna
beam on the terrain. If the antenna pattern remains the
same during the flight, it is easily seen that
A(xlpylpxz.zz)-A(xl-xz,yl.zz). The received echoes as a
function of t are the product of illuminating pattern A,



terrain reflectivity p and the delayed signal function f,
summed over the ground coordinates (xy,y}):

z(t) = I I A(xl-xz,yl,zz)p(xl.yl)f(t~%§)dx1dyl (8)

Substituting eq.(5) into eq.(8),

20) = | [ayxgyp.2p00xyp) 2 £y (e-2Renty)

- 00 n = =0

exp{jwc(t-%g)}dxldyl ¢))

If we interpret eq.(9) as a system with D(xl,yl) as
input and 2z(t) as output of the system, it is obvious that
the system is linear with point spread function

b i 2. ATk
21 (xq-%x,) “+yT+z
h(ez.7)) = ) “("1"‘2'Y1'Zz)fs(':'“T§ [ e d )

n= -w
2.2 -2 %

2| (xy-X,) +y +z

exp{jwc(t- [ 1 2 ~ 1 2] )}
(10)
- exp{jmct} }E:A(xl-ans.yl,zz)fs(t-nTé-
n= -
2,.2,.2]% 2. 2..21%
2| (x¢-nvT_) “+y7+z 2 |(x7-nvT_) “+yi+z
[ L : 3 2] )eXP{-jwc [ L sc 1 21_}

where nvT is the x coordinate of the aircraft at which n-th
pulse is being radiated. It is assumed that during the
transmission and receiving of a single pulse the aircraft is
approximately stationary so that x; is substituted by nvTg
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A

in eg.(10). This is valid if (sufficient conditions)
a) A(xl-ans,yl.zz) - A(xl-nv'r8 + sz,yl,zz)

2
b) (|x1—ansl + 8x,) ~(x1-ans)2 << (y1+AY1)2-Y% and

c) :E|x1-ans|+Ax2)2+y§+z§]%—2[(xl-ans) +y%+z§]% << A,

ST

where sz is the maximum distance the aircraft travelled
during transmission and receiving of a single pulse.
the range resolution desired. See figure 7.
~ bx, < VT as assumed earlier.

] (a) .is easily satisfied by noting that L oEE" 1: is of the
: order of hundred or thousand meters, and is therefore
greatly larger than sz, which is, at most, of the
same order of azimuth resolution desired.

Ayl is
Note that

(b)
2 2
(|x1-an8|+Ax2) - (x,-nvT;)
2
= 2Ax2|x1-ansl+Ax2
< 2Ax2(Leff+Ax2) ~ 2Ax2Leff
while
2
(y1+Ay1)2-y1
2
= 2Ay1.y + by
= 28y, .Y

Since A%, is of the same order as Ayl (potentially best

azimuth resolution vs. range resolution), (b) will be valid
if

Legg << (11)
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2
(c) C{[(le-an8|+Ax2)2+y%+z§]k - Bxl-ans) +y§+z%]%}

2 2
(|xq-nvT_|+b8x,) (x,-nvT )
Y 100 L WL b S - (e % -yt —2
{ (Y1+22) (Y1+22)
- ——2-2—-27 (le-ansl.Ax2+Ax§)
(y1+zz)

2, 4\ %
(Y1+22)

0

2Leff . sz

I

<< sz

However, 1if sz << 'r8 ~ azimuth resolution = range
resolution, then Legg ™= Y1 will also satisfy (b). Note that
ax, is approximately proportional to the maximum range of y,
illuminated by the antenna where Legg << Y by the validi
of (b). Thus if we let bx, be of the same order as A\,, (¢
will be satisfied. In fact, the achievable azimuth
resolution is of the same order as Ao [13].

Because the sinusoidal phase term exp{jw.t} in eq.(10)
does not carry any information on op(xj;,y;), it can be
shifted to any lower frequency we desired. In optical
processing upon SAR data, the "offset" frequency mo#O is to
separate reconstructed twin images from each other and from
other useless images (11,12].

Thus,

}



h(t;xy,y)) = exp{jugt} 2L A(x,-nvT,,y,,2,)

2. 2, 2]%
2 |(x;-nvT_ ) “+yi+z
f(c-nT— [ Wkt L 1})
8 S c

2..2. 7215
2| (x,-nvT ) “+yT+z
exp{-jmc [ 1 : 1 2] }

‘ f Although the return of the pulse train from the two

(12)

dimensional target field is one dimensional - i.e., function

of t only, the recording of data could be two dimensional.

In fact, because of its huge capability for data storage,

film has been used mostly for data recording. Recalling
5 that the signal returns from different pulses do not
' overlap, we could arrange them in a more compact
two-dimensional format: Let X, be an axis perpendicular to
the t axis. If we had moved the n-th pulses' return, which
occurs between time n'r8 and (n+1)T8, left n'rs units towards
t=0 and also move ans units along new axis x2, we would
have had the following configuration of the data shown in
figure 8.

Note that S(xz,t) is nonzero only for 0 < tc< T’ and
that X, is a discrete variable occurring at nvTg only. The
reordering of the data from z(t) to S(xz,t) is an orthogonal
transform and the set of singular values remains the same.
Note that X, and t have dimensions of length and time,
respectively.

The PSF expressed in (xz,t) variables now becomes
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Fig. 8. Reordering of received signal
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h(xz.:;xl.yl) - Z C(XZ-KIVT )exp[jwo(t"'n'f )]A(xl"‘z:Y]:-zz) s

2..2..21%
( 2[(x1-x2) +y1+z§]>xp{-ju r(xl-xz) +y1+22] }

where 0 < t < T
29
Multiplying exp(- Jm n'r ) =exp (- Jw —-) and exp(-jmot)
respectively to h(x2,t xl,yl) yields range offset and
azimuth offset cases, respectively [14]. Thus

h(xz.t;xl_.'_'l) -

exp(jmot) Z G(x -nvT )A(xl x2 Yy z2)

2 2%
(x-x)+y+z (x x)+y+z
fs(t:- [ 1 2 1 Z&xp{ Jwg : 2 L J }

range offset case (14)

h(x2't;x1v:"'-) o

— 2.2
2“ v 2] (x,-%,) “+yy+z
exp(J \?xz) 2 6(x2-ans)A(x1-x2,y1,zz)fs(t_ [ 1 2c 1 E:D‘,

n--ﬂ

(x,-%,) +y +z %
oxp{ jw -[—1 2 1 2] } , azimuth offset case (15)

In the following analysis we shall assume that the range
offset case is used.

Simplifications of PSF

In this section we continue simplifying the PSF
(eg.(14)) of the SAR imaging system. In the meantime a
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hierarchy of models of PSF's with decreasing complexity will
be derived along with their associated assumptions and
approximations.

We start by noting the strong relations between
var iables xq and x,, Y1 and t, respectively: the argument of
fs in eq.(14), t'[z[(xl'x2)2+yi+z§]%]/°' were it not for the
factor (xl-xz)z, would have yielded a propagation delay
which connects Y1 with t only to provide the range
information, and is independent of azimuth modulation. This
is the only way by which h(xp,t;xq,yq) is not separate in
azimuth and range in eq.(14). If this fact can be ignored,
e.g., if the propagation delay induced by the variation in
(xl-xz) is much smaller than the range resolution
interested, then the PSF can be considered separate in

azimuth (x7+x7) and range (y*t):

h(xzyt;xl.yl) 'GXP(_‘]NOC) E 6(xz‘nVTs)A(xl‘x2-Y1.zz)

n=-w
2 2 # 2 2 2
fs(t- —T—') exp {-Jmc [ y ]

(16)

Physically speaking, this means that the range
resolution cells do not move to overlap as the flight goes
on. The situation is depicted in figure 9, where the range
Y of a target point is plotted as a function of the position
x of the aircraft. Various ways have been proposed to
alleviate the problem of range-azimuth coupling [15,16,17].
1f or is the range resolution pursued and B is the effective
beam width then this range curvature effect will be ignored
if |[(xl-xz)’+yi+z§]*-(yi+z§)*| ¢ o, for all valid x;-x, and
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Fig. 9. Range variation of a point target.
Ay is less than range resolution.
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Y1 where by "valid" we mean A(xl-xz,yl,zz) is significant.

Assuming (xl—xz)<<(yi+z‘?,.)}‘i as in eq.(11) and

B small, we

have
2
2 2 2 0 R T 1 (*1‘x2) R R *
[(xl-x:; -~ y1+zz]& - (y1+zp)® = (+z)" + 7 z;::;;;g (y,+25)
2
il SEyrEy)
z (y1+22)‘;'
2
o i pes
: (y1+zz)E
=~ & Lege
We r at
o o8 an

in azimuth and range, if eq.(17) holds.
in azimuth and range, we rewrite eq.(16) as

h(xy,t;xy,yy) = exp(jwot)fs(t- 5

2
2(y1+z;)

i.e., PSF can be approximated by eq.(16), which is separate

To see that the system with kernel eq.(16) is separate

)

Z‘S (xz'nVTS)A(xl"xz ' )’1 ’ 22) exp {'ch

r.= =

o h:(‘in)hz(xzixloyl)

2[(x1-x2)2+y;+z;]k }
c

(18)




2 2(yi+z§)?‘j
where ht(t;yl) exp(jmot)fs(t-—~—3————) is the impulse

response of t due to a unit point source at Yy which is
independent of azimuth dimension; and

2[(x1-x2) +yi+z§]
exp —jwc -
is the impulse response of X, due to a unit point source at

(xl,yl). Note that hz(xzyxl,yl)=hz(x1-x2;y1) is space
invariant in X, and X but varies its form as Yq changes.
If we use eg.(18) as the kernel of SAR, then the
input-output relation will be

z(x,,t) =‘ﬂ ht(t;yl)hz(xl-xz;yl)p (xy,yy)dx; dy;

- [m ht(t;yl) [ Im hz(xl-xz;yl) p(xl'yl) dxl] dyl

Thus the imaging system of SAR is to transform p(xl,yl) into
z(xz,t) in a sequential order: azimuth transformation
followed by range transformation. However, because of the
dependence of hz upon y,. ht and hz are not separable and
thus in general their order cannot be interchanged in
modelling the system. Accordingly, the reconstruction of
the ground reflectivity function p(xl,yl) from its image
z(xz,t) has to follow the reversed order.

From eq.(11), |x1-x2|<<yi+z§ hence
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(xy-x,)?
2 lyox,) ¥ yi+z§]’k 2(yj+ag)®4e 1727 %2}
exp | -ju, - > exp{-ju, (y3+23)
c
= exP{‘jm 2(y{+z§)% } exp({-j (xl-xzy
st iy i =Jw
. : ° (yi+z3)®

and thus hz(xz’xl'yl) can be approximated by

2(yi+zi)% =
hz(xz.x:,yl) = exp -jmc S E G(xz—ans)A(xl-xz,yl,zz)
n=-o
w (x,-%,)2
sip aa ey
(y1+z2)
2(y3+23)¥
Because the phase term expg-jwc———-z———— is independent of

azimuth its effect can be taken out and absorbed in the
reflectivity function p(x,y). It is a nonlinear operation
on p(x,y), however, its effect on the singular values of SAR

will be ignored. 1In terms of block diagrams, we have figure
10 where

2(yi+z§)¥)
c

h (t;7)) = exp(Ju,t) £, ( t-
hy (x;-%o,y7) 8 Z&(xz-ans)A(xl-xz,yl.zz) L9

n=-=

W (Rl'xz)z
exp | -1& irzhh

Equation (19) is the form assumed for most of the processing
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of the SAR data. All the assumptions required are easily
justified to reach this point. We shall proceed to
approximate eq.(19) by one separable in azimuth and range,
i.e. such that hz is independent of Y1 in eq.(19). This

will be true if
(A‘ A(:{l'xZ,yl,22) - A(xl"‘x2,22)

8 T (xy-x) | | 1o (x-x, ¥
{ exp | -j— T exp| -j—
& (yi+z§)§ % (yi+z§)E

for all valid y, and yl'. (A) can be made approximately
true by an appropriate antenna pattern design with

geometrical considerations.
2 2
ylmax"'ZZ )
(B) will be true if J int? where y ninand Ymax Mean the
Y1 coordinates of the target points at maximum and minimum
ranges covered by the antenna beam, respectively. We shall

not elaborate on the exact form of the inequality.

It is pointed out that in general (B) cannot hold
practically. However, if it could, then the system of

eg.(19) would be separable:

h(x,,tixy,yy) = he(t;yy) h (xy-%q) (20)

Further theoretical reduction of h is still possible:
if we ignore the offset frequency term and assume that
Y>>z, for all valid y; such that 2(yi+z§)klc can be

approximated by EZL and by changing variable tzé EZL
c c

2y
then ho(t;y,) = fs( --El)

or ho(t;ty) = £.(t-t,)




h(xz.t:xl.yl) - hl(xzntﬁxlntl)
and - ht(c-tz)hz(xz-xl) (21)

is a separable space invariant PSF (SSIPSF).

A summary of the properties of the PSF's under various
assumptions are listed in Table 1.
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Lﬁ TABLE 1

FORM OF PSF ASSUMPTIONS

NSVPSF2 1. separate pulse return do not

overlap

2. ailrcraft stationary in one
Ts time or Leff <<yy

NSVPSF Liag> %Leff

separate in azimuth and
range (order counts)

invariant in azimuth

(16)
(18)

E (20)

SSVPSF 1. A(x-Xp,¥1.29) = A(%)-X,,2,)
invariant in azimuth s yi max+z§ :
e ey

2 2
i1 m1n+22

(=

SSIPSF“ . range offset frequency mo-O

el s
1

(21)
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3.2 DOF of Tomographic Projections

Chung-Ching Chen

Introduction

Recently the reconstruction of an image from its
projections has gained more and more interest in many fields
such as electron microscopy (1], radio astronomy (2],
medical tomography [3], etc. 1If the projection systems are
ideal, e.g. 1if the projection beam is infinitely narrow, it
is possible to reconstruct the image perfectly by direct [2]
or indirect [1] manipulations of the projections. However,
in reality, the projections are blurred and usually only a
finite number of projections are available. Although in
general we could obtain more information by more
projections, it seems that because of the inherent blurring
of the system, there is an "optimal" amount of projections
beyond which the cost of increased data storage and
manipulation is not worth the rapidly decreasing information
return. The concept of degrees of freedom (DOF) has thus
arisen to quantify the number of truly independent data
gathered under a certain geometry (4,5]. By examining the
eigenvalue spectrum of the correlation matrix (or the
Gramian) associated with the linear imaging system, one is
able to evaluate the system performance in the sense of DOF.
Roughly speaking, in the eigenspace of the system only those
components (or singular values) whése magnitudes are larger
than the noise level provide information about the input
with high enough confidence. Discarding those singular
values of relatively small magnitude also guarantees an
optimum bandwdith reduction or data compression in the
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minimum mean sguare sense, among other advantages of
eigenspace manipulations. As is well known, the complexity
of the diagonalization process of an arbitrary N x N matrix
increases very rapidly with N (of the order N3) (6], in
addition to the fact that only approximate values can be
obtained because of the iterative nature of the algorithms.
This limits the practicability of eigenspace analysis even
for moderately large N unless the system (and hence its
matrix) is well-structured and algorithms to fully utilize
its structure to speed up the computations exist.

In this paper we discuss the principles of operation of
a tomographic projection system, formulate its Gramian
matrix and seek fast ways to find its eigenvalues for
certain sampling functions.

Formulations

Referring to figure 1 let the rectangular coordinate
system (g,n) be fixed on the object whose size has been
normalized to be contained within a unit circle and (x,y) be
another rectangular coordinate system with the y-axis
parallel to the lines of projection for a given source
orientation angle 6 defined as the angle between axes x and
£ as shown in figure 1. The relations between the
coordinates (x,y) and (&,N) are

x = gcosf+nsing £ = xcosf-ysiné

or

y = -£sind+ncosé n = xsiné+ycoss (1)
For each © "r samples Y1rY2reeo Yy are taken corresponding
to M, non-ideal line projections perpendicular to the x-axis
with 0 < Y, < 1. The number of samples in 6 is My, with 68y,
i=1,2,...,Mg ranging from 0 to 27, Thus the total number of
samples is MM and the system is a continuous-discrete one
[7) because the input variables (£ ,N) are continuous and the
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Figure 1. Coordinate systems
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output variables (y,0) are discrete. Let f(£,n) be the
object density function, then the projection Z(Yk'ei) is
related to f(g,n) as a two variable Fredholm integral

2100 = [[ £6m) neop e dean 2

where h(ei,yk;g,n) is the point spread function (PSF)
designating the contribution of a wunit magnitude point
spread source at (§,n) to the output variables (84,v,) and R
denotes the unit circle. Note h(84,Yyi € N can be rewritten
as h(ei,yk;x,y) through the transformation of eq.(l). We

assume that the projections are aimed at Yy, k=1,...,M,, and
assume the same waveform w(x) in the x direction. Then

h(ei.yk;x,y) = w(x-yk) is a shifted version of w(x). Thus
eq. (2) becomes

zlyy,84) = ffnf(a.n) w(Ecosby¥nsing; -y, ) dédn  (3)

where we have used the relation of eq.(l) with the addition
of subscript i. Note that Xy and y; are continuous
functions of £ and n , although the functions depend on
discrete variables 91 because of the discrete sampling over
the whole circle.

In terms of matrix notation, eq.(3) assumes the form
(2] - [ [ [#ee.m] ece.maean )
R

where (2] and [H(E,n)] are matrices of size M, x Mg. For
our purpose it is more useful to put eg.(4) in a vector

z= I I h(g,n) £(€,n)dEdn (5)
R
where z and h are "tue x 1 matrices., Degrees of freedom of
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the imaging system can be derived from the eigenvalues of
the following correlation matrix

[r] = J I h(g,n)h"(£,n)dedn (6)

R
If the image vector z is formed in a 1lexicographic order

then the matrix will be

oY, wf2 ... [ (Mg

(r] = ;
] Mer 1) f]Me.2) [r] Mo Mp) )

where [F]i'mis the correlation matrix between i-th an m-th
samples in 6. The (k,1)-th entry of (Ffi’m)is

"D - U i i T ®

where '1 and xm are defined in eqg. (1) with 6 = 61, 0 = em'
respectively and w(xi-yk) is the pulse function along the xy
axis shifted by Yi units. A similar geometric
interpretation for w(xm-yl) exists. The situation is
depicted in figure 2 where for pictorial clarity, finite
width of w(t) is assumed. The integration of eq.(6) is over
the overlapped region of w(xi'Yk) and w(x~Yy) which 1lies
within the wunit circle. Unfortunately there is no closed
form for the expression of eg.(8) for arbitrary function
wix) . A major difficulty is that the integrand is limited
to the unit circle instead of the whole plane. Appropriate
assumptions on the shape of w(x), as are usually practical,
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can alleviate the problem to yield satisfactory
approximations of eqg.(8).

Sharp Projections and Their Approximate Correlations

Let us assume that the "effective" width of w(x) 1is
much smaller than 1 or the maximum radial dimension of the
object, so that if the intersection point of the two 1lines
Xy = Ypand x, = Yllies outside the unit circle, the
integration in eqg.(6) can be approximated by zero, while if
the intersection point lies within the circle, the
integrand, which is shown geometrically in figure 2, can be
appropriately replaced by

G3-[] wpmapun  ©

- 00
where the limits of the integral have been extended to
infinity. In other words, we approximate eqg.(8) by
‘ @

"' YD = ek | fempurogdean  (10)

where U(i,m,k,1) is a mask function defined as

g
lies within unit circle

U(i,mk,l) =1 if solution of ,
Xn= 1

= 0, otherwise

We shall find a mathematical expression for U(i,m,k,1):
Cc0l01+nainot-7k

(11)
Ecosen+nninem-71

The solution (Eo,no) of eq.(1l1) is
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i
3

£o s{n(em-ei)

choaei-ykcosem
lin(F;AFi)

No

and (¢ o'"o ) lies in a unit circle if and only if

£g+n0 < 1 133

2 2 X (12)
[yk+y1-2yky1coa(6m-ei)] S|Si“(°m'°i)|
Figure 3 shows a geometric interpretation of the above

inequality, which is an even function °fen1-ei’ Thus

U(i,=n,k,1) = 1, if [Y§+Y%-2YkY1cos(em-ei)]§|sin(em-ei)|

= 0, otherwise (13)

Diagonalization of the Gramjan for an Infinite Domain w(x)
Function

Let us assume that w(t) has a normalized Gaussian shape
with variance 0% i.e.

u:(x) - —~ex ; (14)

P} 2]

Let u be the bisector of the angle formed by Xy and Xn
and v be the axis 90° counterclockwise from u, as in figure
4. Since the angle between u and Xy is 32;21 + we have the
following transformation relations:
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Y1 cos(em-ei)]%

|31n(9m‘91)|

Figure 3. Interpretation of U(i,m,k,1)
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Figure 4. Definitions of u and v
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0 -8 0 -84 (15)

We are now in a position to find a closed form for eq.(9),
in this case in terms of variables u and v:

Hence

f}w(xi)w*(xm)dedn

' []w(xi)w*(xm)dudv

- oo

2 » 2 o
- 2%%7 Iwexp{-gr cos? °m ei}du[uexp{fgrsin’ m%) gy

- csclem-ei| (16)

Because eq.(16) blows up at em '91' a more accurate
approximation for this case is required. Assuming
negligible overlap between adjacent pulses with the same
orientation as before, we consider the case Y "Yie X4 %X
only as in figure 5. 1In this case we modify the 1limits of
the integral of variable v to get
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Figure 5. The case 6, = 68 , t, = t,
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(1,1) 1 \2 ¥ 1 Yk
’ - d
48 ) [ bt [
==Yy (17)
e Tt -12
/7
(1,m)

Thus we have the following expression f°'Y(k:1)

g
oD = WLmk,1)  cacle -0, | 080y

e 1S |
e THRe On=01: YN

where U(i,m,k,1) is given by eq.(13). Note that eqg.(18)

implies that the adjacent 6's are not so clole as to make

%U(i.n.k,l) csc(6,-8,) larger than either /T2 or
i '7' k

37;/1 Yi. 1f thlu should happen in eq (18), an appropriate

thresholding function should be incorporated in the

expression. This is the result of the Schwartz inequality
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-

]]w(xi-vk)w(xn-yl)dsdn
R

A

[I[“’(‘i'Yk)dEdn f!“z(xm‘71)d5dﬂ]¥
R

R
max[(f]w’(xi-yk)didn)zﬁ[w'(xm-yl)dﬁdn’]
R

A

where w(x) is a nonnegative function. Note thatvgi:T;
depends on 9. and 6y only through their difference, a fact
very useful in diagonalizing [T]) to find its eigenvalues.
In addition YE&:T) is an even function of6_-6,. These

phenomena make the Gramian matrix look like

D, @ED, [ g ]

[, @b, [ e g
il g (19)

[l']il'Z). My, [s, [r](l.l-)J

a circulant matrix whose elements are symmetric matrices but
are not necessarily circulant themselves. It is pointed out
that the thresholding function of eq.(18) as mentioned
earlier does not affect the circulant property of eqg.(19).
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Fast algorithms to diagonalize eg.(19) exist [8].
Because of its circulant property with elements (] JE (r)
can first be block diagonalized, a process similar to the
one diagonalizing a circulant matrix except that here,
entries of ('] are matrices of sizes M. x M. instead of
scalars. After block diagonalization, the block diagonal
matrix can be diagonalized by individual block
diagonalization processes, greatly reducing the computation

required.

Summary

The imaging system of tomographic projections has been
reviewed. The structure among the datd gathered is utilized
to yield a computational reduction in diagonalizing the
Gramian matrix of the system for projections with
Gaussian-shaped blur. Sharp projections are assumed to come
up with a closed form expression of the elements of the
Gramian matrix, although other approaches based on different
assumptions also exist [8]. 1In the Appendix, a rectangular
pulse form is assumed and the corresponding Gramian derived,
although many other waveforms are also possible to get a
closed form for [']. It is observed that theygi:ig. of the
“"autocorrelation” of the pulses increases as the width of
pulses decreases*, while Yfi:?; ifm or the
"cross-correlation” is independent of the pulse width due to
cancellation of the area under pulses with widths of pulses.

In the ideal case where the pulse is infinitely narrow,

*this phenomena is due to the fact that the value of a
diagonal entry is equal to the peak value of the response of
a matched filter which is a measure of the total energy of
the signal. the total energy of a normalized
Gaussian-shaped signal increases as its "variance" decreases
as can be easily verified.
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(r] resembles a diagonal matrix.

Aggendii?ﬂu Gramian 'AnaiyéiE' for rwﬁeétahghlat-Shaped

Projections

We assume w(x) = b rect(bx) as shown in figure 6 where

rect(x) =1 -% <x < %

=0 otherwise £

and w(x) has been normalized such that I w(t) dt = 1.,
Similar to the case with Gaussian-shaped projections, we

assume % << 1 so that the approximation schemes carry over
here.

Referring to figure 4

w(x)o(xy) = b2 1f  (xq,%) € parallelogram ABCD

=0 otherwise

Note that (xi,xm) are not rectangular coordinates

[Juxprur ey agan

= b2A££ dvdu <1>
D

2

= b“ x Area (ABCD)

8- 1 6 _-0
m 1 and AO = csc m 1
3 z__ a 75 ’

”u(xi)w*(xm)dﬁdn =262 x AOx OD <25

1
Since OD = 75 sec

= csc|6 -9, |
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Figure 6. Rectangular function
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Again, eqg.<2> blows up at6 =6, So for i=m, k=1, we again
modify the limits of the integral in eq.<1>.
o ‘ 2
(i.1) 2 Yk
Yk k) = b“rect(bu)du 1l dv

- i ’1-Yk2

=2b. ~Y§
Thus
(i.2) _
Yk 1) U(i,m,k,1)csc|e -6, ] : & wii
m' i
= 2 == =
2b 1 -Yk ’ em ei’ Yk Y1
<3>
ok ¢ v 085 Y M
Againy%i'?%depends on i,m only through the difference
ei-em. The hiagonalization of [r] is thus similar to that

discussed earlier. Thresholding upon the values of
off-diagonal entries may be necessary if the projections are
very densely sampled compared to the width of the projection
functions.

Comparison of eqg.(18) and eq.<3> shows that if o= 2%75
and is sufficiently small then Gaussian projections and
rectangular projections have the same Gramian matrix and
thus from the DOF point of view, they are of the same
per formance.
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3.3 Psychovisual Transform Coding of Images (Supported by
WPAFB under Contract F-33615-77-C-1016)

Charles F. Hall

Several recent papers have discussed the merits of
transform image coding [1-6]. This particular research is
concerned with an extension of this technique. The images
to be coded are first preprocessed with an algorithm which
is based on a model of the human visual system (HVS) (7] and
[8). The system to be used is shown in figure 1.

The first two blocks of figure 1 represent the HVS.
The bandpass filter portion is implemented with the equation

ACE) = 2.6[0.0192+0.114f Jexp[-(0.114£,) 1] )

(see [8] for an illustration of this isotropic filter
function). The next three blocks represent the coding
portion of the system. The preprocessed image 1is cosine
transformed, quantized, and then inverse transformed. The
cosine transform may be taken in any block size up to the
full image size, which for this work was 256 x 256. The
quantizer was a Max quantizer which assumed a Gaussian pdf
for all transform coefficients. For the D.C. term a mean
was estimated and subtracted from the D.C. value prior to
quantization and then added back subsegquently. After the
transform coefficients are quantized they are inverse
transformed and then. passed through the final two stages
which represent the inverse HVS.

There are several advantages to coding by transform
blocks smaller than the image size. If one transforms 8 x 8

blocks for example, only eight 1lines are required before
processing begins. In addition only two 8 x 8 covariance
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matrices need to be diagonalized and used to compute an
8 x 8 bit map. To visualize how this bit map is used the
entire cosine transform domain may be reordered for display
purposes into a two-dimensional Mandala transform domain
{9]. Such an ordering of an 8 x 8 block cosine transform of
the GIRL picture is shown in figure 2. The input image was
256 x 256, thus there are 1024 terms for D.C. and every
component. For the cosine transform there are 64 unique
frequencies including "0", i.e. D.C. The 1024 terms make
up a 32 x 32 array which, when scaled for visible display,
form a subimage in figure 2. Every term in each subimage is
coded with the same number of bits and since there are only
8 x 8 subimages our bit map is only 8 x 8. Note how the
increasing harmonics (left to right and top to bottom)
represent more and more "edge" information and the highest
harmonic (lower right subimage) is almost random noise.
These particular subimages are set to zero in the coding
process. (The reader should note that each subimage has
been scaled for display. There were more than 6 orders of
magnitude differences between points in upper left and lower
right before scaling).

If we actually quantize the block cosine transform of
the GIRL for an average rate of 1 bit/pixel we would get the
result shown in figure 3 (after inver se cosine
transforming). The normalized mean square error (NMSE) in
this case is 0.395%. If one examines the picture carefully,
particularly at edges, small 8 x 8 blocks can be detected.
These blocks become visible when errors in quantizing the
D.C. term for that cell become large enough to shift the
average grey level a detectible amount. If we code the
image with a block size equal to the image size, obviously,
this problem disappears. Figure 4 contains such an image.
In this case the bit rate was 0.7 and the NMSE was 0.33%.
Thus, we have reduced the bit rate by 30% while decreasing
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Fig 4. Cosine Coded .7 bit/pixel
(256 x 256 blocksize)
NMSE = .337%

Fig 5. Psychovisual Cosine Coded Fig 6. Psychovisual Cosine Coded
1 bit/nixel .7 bit/pixel
(8 x 8 blocksize) (256 x 256 blocksize)
NMSE = .4347, NMSE = .35%
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the NMSE about 20%.

In the previous paragraph we considered an image which
had not been preprocessed by the human visual system model.
I1f we now preprocess the GIRL with the HVS and 8 x 8 block
code as shown in figure 1 we obtain the result shown in
figure 5. This image was coded at 1 bit/pixel and the NMSE
was 0.434%. Although the NMSE is larger than the 8 x 8
block result in figure 3, a close inspection reveals that
the 8 x 8 subblocks are not as visible in figure 5. Again,
a 256 x 256 block size was used and the result is shown in
figure 6. In this case the rate was 0.7 bit/pixel and the
NMSE was 0.35%. The reduction in NMSE is again
approximately 20% with a 30% decrease in bit rate.

If one refers to figure 1 and considers the
implementation of the HVS linear filter is in the Fourier
domain the 1logical gquestion is, "why not code in the
filtered Fourier domain?" This coding scheme eliminates the
cosine transforming completely and also eliminates a forward
and an inverse Fourier transform. The system is therefore
reduced to that shown .in figure 7.

The GIRL picture was coded in this manner. The result
is shown in figure 8. This image has a rate of 1 bit/pixel
and a NMSE of 0.26%. The quality of this image compared to
the other results within this paper indicates that coding
the HVS filtered Fourier domain (as proposed in [7]) results
in excellent quality images. The technique is being
extended to color imagery as proposed in [7] and initial
results are encouraging.
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3.4 Statistical Analysis of a Model of the Human Visual
System (Supported by WPAFB under Contract F-33615-77-C-1016)

Charles F. Hall and Lloyd R. Welch

In a recent paper Hall and Hall have discussed several
models for the HVS [1]). 1In this section we will analyze one
of these models (shown in figure 1), both statistically and
deterministically. The main objective will be to determine
the assumptions which may be made about the characteristics
of images after they are passed through the model. 1In
particvlar, those characteristics consistent with the
assumptions must be made to apply the known solutions to the
pacametric set of equations which are the heart of
rate-distortion theory (2,3].

We will begin by first considering the assumption of
Gaussian pdf. The image will be assumed to be Gaussian
after passing through the nonlinearity. This assumption
presents no problem since the filter of figure 1 is linear
and hence the output of the filter will be Gaussian if the
input 1is. When the output of the nonlinearity is Gaussian,
what is the pdf of the input? This question is answered

quite simply by applying a fundamental theorem discussed in
section 5-2 of Papoulis [4).




linear B.P.
e S —— filter i

Figure 1. Nonlinear model of HVS.

S

Figure 2.

i Mt 2
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For the analysis consider figure 2. Let x be the
Gaussian distributed image. From figure 2,

y = g(x) = &% (1)
also
s -(x-u)?/20?
£() = 7hg e (2)
Solving for x in terms of y
x; = 1n Y1 (3)
also "
g'(x) = e (4)
Thus
£.(-) = fx(fl)
y I3 1K15|
becomes

" = 2 2
e~ (1n y -u)*/20 y; 2 0 (5)

1
72w0y1

This pdf is known as the 1lognormal distribution and has
several interesting characteristics [5]. Plots of this
function for several values of pand o’ are shown in figure
3. The similarity to image histogram data is immediately
apparent. The histogram data for the Kodak GIRL image was
plotted on 1log probability paper and is shown in figure 4.
Note that the data points are essentially three straight
lines over the 1% to 99% range. This indicates the data is
strongly lognormal. Thus, we see the HVS models help
satisfy the common assumption (which is unrealistic for an
unprocessed image) that the data is Gaussian.

Next, let us consider the entropy of the two processes.
We will use the common definition for differentiated entropy
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Figure 3. Frequency curves of the lognormal distribution
fgt a) three values of 0? and b) three values
of u.
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W) -[ P(x) In p(x) dx (6)

where p(.) denotes the pdf of x. Shannon has shown for the
Gaussian case we get (6]

H(x) = /Zreo (7)
Consider the lognormal distribution,

=(In x-p)?/242

P(x) = 37%;; e (8)

then

In p(x) = -1n[ov/Zrx] - £1_nzai;y)_’ (9)

and

H(x) = ] p(x) lln(o/ﬁx) + (—I%M] dx (10)

0

where the lower limit of integration has been changed to 0
since x ranges from 0 to = for the lognormal pdf. Thus,

H(x) = J- p(x)1n(ovVZF)dx + r p(x)1n x Ox

0 0 (11)
- ln x- 2
+ I p(x) dx
0 20
but
I P(x)dx = 1 (12)
0
therefore

H(x) = ln(o/Z7) + r p(x)1n x dx +

0 (13)

© 2
I p(x) {IB X -W)° 4
0 20
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Now let y = 1nx which implies x = e/ and that dx = eYdy.
Also, when x =0, Y = -« and when X =®, y = o,
Substituting into eq.(8) gives

1

2in 2
oS R o ki, (14)

Completing the substitution in H gives

H(-) = ln(ov/ZF) + ]’ y e (r-w?/2d?

!w "Zmo 4
. 2 %l i
+ L ] Qow)” o-ty-w7/20% o
2¢° / vZro

The first integral is just the mean of a Gaussian pdf and
the second integral is the variance, therefore,

HC-) = In(avZ®) + u + 2—12 o2 = In(a/ZFE) + 1 (16)
g

Thus, for a nonzeroyu we have an entropy change qoing through
the system which 1is equal to v, the mean of the resultant
Gaqésian pdf.

Next we will consider the autocorrelation and power
spectrum for such a system. Now

R (1) = E{x(t)x(t+r))

(17)

+ T.-t,+»
'I.I--I. eyley2e-;(y~u) C “(y-uw)
Ve |c|*

where N is the dllenslbn of the system and equals 2 for our

case. Also, »T
b (’1 YZ) (18)
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and
o ozpy(r)

(19)
Uzpy(f) o

In this case p (T) is the normalized autocovariance defined

o py(T) = E{[y(t)—u] [y(t+r)-u]} idat
Now let M= AnE -j and rewrite Rx(r),
R (1) = Eiejxlyla:kzyzf
(21)
r wa ejA1y1+jA2y2e-¥(§-u)TC'1(§-u)
dy, dy,

- /T7 [c|¥
The above equation is in the form of a characteristic
equation. The characteristic function for a two-dimensional
Gaussian of nonzero mean is (see [4), p. 255)

T - R o (22)
where \™ ' = (-3 -j), therefore,

Ry (1) = 0[:}] - e°2[1+9y(r)]+u(c)+u(:+r) (23)

For the input process x, we will assume the general

form for the autocorrelation in terms of the covariance of
the process,

Re (1) = ug + Co (1) = uy + oy Px (1) i

Then, from eq.(23) we have

-136-

B S 5




2ut+ o2[1+p_(1)] (25)
Rl sy dabopln)yeg ¥ F ¥

Now

u_+%0?
E{x} =y, = E{eY} =e Y Yoy (26)

therefore

2u_+o?

and substituting in eq. (25) yields

: o p_(1) (28)
R B c; px(f) - u; a Y
or o2 2
ok os p (1)

TR Pe(t) = e ¥ 'Y (29)

Expanding the right side of this equation gives

ol - 2k P k(

et A - 2 T
L4 :; Py (1) 1+ oy py('r) + ?Zoy ) (30)

The sum of eqg.(30) represents the error if we use only the
first two terms of the expansion. The normalized covariance
of any process will have an upper bound of 1. Also, for
typical picture data 0; = 0.5. Thus, the worst case
expansion is on eo'sand the error in taking only the first
two terms is less than 108. This is a very conservative
error bound, particularly since it assumes the data are
completely correlated. We will neglect the error term in
eq.(30), giving

Q

z s
LR o (t) =14 03 by (1) (31)

From eq.(29), if we take the natural 1logarithm of both
sides,

( o;
1= il + a: px(t) - o; py(r) (32)
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Typical image data for the x process gives a ;¥ ratio of
0.16. Again for a wor st case ox(r)x- 1l we get
In(140.16) = 0.14842 which is within 8% of 0.16. Thus,
within experimental error

’ oa
2il+ F-p ()] = X - a2 (33)
] lT; X ‘T; Dx('l') Oy py(r)

Now px(T) =1 for 1 = 0 for any valid covariance function,
therefore

g2

X 2

T i g (34)
ux y

Substituting eq.(34) into eq.(3l) gives
2 & (35)
l1+o¢ Py (T) 1+ o; py(T)

y
which implies that ax(r) = ay(r). Thus, the output
autocorrelation becomes
= 2 2 36)
R, (1) uy + ol (1) (

By definition the power spectrum of y process is

Sy(m) s [m Ry(t)e'jwrdr (37)

Therefore, : i - e
Sy(m) = ; [u + 0 px(r)] e dt

y y

e (38)

= 2 2 -Jut
21my §(w) + 9y L Pe(T) e dr
This relationship is of great importance in rate-distortion
applications. Given an input autocorrelation, we can
compute the output power spectrum which can be used in the

equations (see (2], p. 117)
1 @
De - I [min ©, o(w)] duw (39)
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and

1 " o (w
R(De) - I [mnx 0, 105—%—2-](1(0 (40)
-0l
Thus, the rate-distortion curve of the source x, after

passing through the logarithmic nonlinearity, can be easily
obtained.

A common assumption for imagery data is that it is
Markov, in particular,

o a-lEl
Pylt) = e (41)

Substituting this form into the power spectrum equation
gives

Sy(m) = a; [ne"ulT'e'jder + 2nu; 5 (w)
2a0?

% (42)
P 1 Znu; §(w)

al+w?

Referring to figure 1 and letting H(w) be the linear filter
function we see that

2ac?
S,(w) = S (w) |H(w)|®= Efz + 2mug 6(w) H@w) | (43)

We have shown that if an image source is lognormal and
Markov, then after passing through the HVS model of figure 1
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it will be Gaussian Markov with a power spectrum defined by
eq. (43). Furthermore, the entropy of the original source
will be changed byu , the mean of the resultant Gaussian
pdf. These results are being used to find theoretical
bounds on the coding improvements which can be realized when
images are preprocessed with models of the HVS.
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3.5 A Technique of A Posteriori Restoration

John Morton

This effort is concerned with restoring a degraded
image while assuming a minimum of a priori information. The
previous reports [1-2]) have outlined the approach to be
investigated and in addition, contain summaries of the
progress achieved up to the respective report dates. This
report will present some preliminary results.

Figure 1 contains four statistically similar images,
statistically similar in the sense that the power spectra
corresponding to the four images are similar. Note that the
subject content of one image is different from the other
images. The difference in subject matter was intentional to
emphasize the point that different image subject matter may
corrrespond to similar power spectra.

A contour plot of the 1log of the power spectrum
calculated from figure la is presented in Figure 2. Figure.
3 contains the 1log of the average power spectrum
calculated from figures 1b, 1lc, and 1d. Note the close
similarity between figures 2 and 3. The power spectrum
depicted in figure 3 will be used to estimate the magnitude
of the optical transfer function (OTF) via the method of
Cannon [3].

Figure 4 contains a perspective plot of the point
spread function (PSF) to be used to degrade the image
presented in figure la. Figures 5, 6 and 7 contain the
image of figure la degraded by the PSF of figure 4 together
with restorations assuming different combinations c¢of a
priori information. Table 1 defines the assumptions
associated with the different restorations.
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Figure 1. Four statistically similar images.
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Figure 2. Contour plot of the log, , of the power spectrum
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Figure 4. Perspective plot of the PSF to be used
to degrade the image presented in Figure la,

-145-




Figure 5, a) Figure la degraded by point spread function of Figure 4.
b), c), and d) restorations see Table 1,
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Figure 6. a), b), c), and d) restorations see Table 1.
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Figure 7,

c)

a), b), and c) restorations see Table 1.
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POWER SPECTRUM
PSF OF
FIGURE MAGNITUDE PSF PHASE [UNDEGRADED IMAGE
5b given "\ given given
5S¢ given estimated as 0 gliven
5d given estimated given
6a estimated given estimated
6b estimated estimated estimated
6¢c estimated estimated as 0 estimated
6d estimated estimate multiplied by -1 estimated
7a estimated estimate multiplied by -2 estimated
7b estimated estimate multiplied by -3 estimated
7c estimated estimate multiplied by -4 estimated
Table 1. Key to Restorations of Figures 5, 6, and 7.
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If one has knowledge of the OTF and also knowledge of
the power spectrum of the undegraded image, one can obtain
the restoration of figure 5b. Figure 5¢c assumes knowledge
of the magnitude of the OTF, knowledge of the power spectrum
of the undegraded image, and an estimate of the phase of the
OTF of zero everywhere. Using the algorithm previously
reported [1-2] to estimate the phase of the OTF and assuming
knowledge of the magnitude of the OTF and knowledge of the
power spectrum of the undegraded image, one obtains figure
5d. Upon comparison of figures 5c and 54 it is apparent
that the phase estimate per se does not afford any
improvement over a phase estimate of zero everywhere.

Upon examination of figure 6a where the magnitude of
the OTF 1is estimated using the power spectrum depicted in
figure 3, and where in addition the power spectrum of Figure
3 1is used as an estimate of the power spectrum of the
undegraded image, and lastly assuming the phase of the OTF
is known, it is evident that estimation of the magnitude of
the OTF is very good.

Figure 6b assumes no a priori knowledge. Figure 6c
assumes no apriori knowledge of the magnitude of the OTF,
nor any knowledge of the power spectrum of the undegraded
image and assumes an estimate of zero everywhere as an
estimate of the phase of the OTF.

The phase estimate can be shown experimentally to
converge to a phase which 1is of incorrect sign and to a
value less than, in some cases much less than, the correct
value. Thus, it 1is not unrealistic to change the sign of
the estimated phase and boost the estimates by factors.
Pigures 64, 7a, 7b, and 7c correspond to the phase estimates
with a sign change and multiplications of 1, 2, 3, and 4
respectively. As judged by the increased sharpness in the
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collar of the man and less distortion in the face of the
man, perhaps some improvement has been obtained.
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3.6 On-Axis Optical Filtering System (Supported by NSF Grant
ENG~76-15318 and AFOSR under Contract AFOSR-77-3285)

Alexander A. Sawchuk and Chung-Kai Hsueh

Computer generated holograms have many advantages over
optical generated holograms. If the hologram is used in a
filtering system, the filter H(f) can be specified without a
physical specimen of the impulse response. Computer
generated holograms also eliminate the need of very stable
and low noise photographic recording set up. With computer
plotting, the nonlinearity of the film and other effects of
the system can be precompensated and more flexibility can be
achieved.

However most of the computer generated holograms are
off-axis. The desired output appears on the first
diffraction order which has a maximum diffraction efficiency
of 41% when square wave phase grating is used. Since most

of the energy is concentrated at the center, to get useful
results, we have to increase the carrier frequency and
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restrict the size of the impulse response and the object to
avoid overlapping between two adjacent diffraction orders.

On-axis holograms, on the other hand, do not have the
problems mentioned above. The desired output is on the axis
and contains most of the energy. As will be explained later
if the high order diffractions can be eliminated properly
the whole output plane is available and the size of the
object need not be restricted. The sampling rate of the
filter then depends on the extent of the impulse response
rather than on the object extent which is generally much
larger. Therefore the sampling rate is much lower compared
to other holographic type filters. However for proper
suppression of the higher diffraction orders, the sampling
rate still has to be considerably high as will become clear
in the following analysis.

To simplify the notation, we use one-dimensional
variables in the following formulation. The complex filter
“,(“) is designed to have coherent impulse response h(x) and
incoherent response | h(x)|? 1in the image plane. Denoting
the Fourier transform of h(x) by H(u), the digital hologram
H.(u) approximates H(u) by a series of weighted pulses

Hs(u) = i[z:ﬂ(nsu)c(u-nﬁu)] * p(u)z « M(u) (L
n

shown in figure 1. The pulse spacing is du, each pulse has
shape p(u) with weights given by sampled values H(nsu). 1In
general the pulse has a rectangular shape with width 4u,
i.e.,

u
u

p(u) = rect .7y (2)

The function M(u) is a mask representing the physical size
limit of the hologram. If we assume that H(u) 1is

-152-




|

Hg (u)

ey
)

\

e

-néu -26u -du -% 0 g su 28u ndu

Figure 1. Complex Pupil Mask.

hg (x)
» X
g i ., X 1 2
Su Su i 4 2 Su 8u

Figure 2. Output of Fourier Transform Lens.

-153-

&

S i i

sl




bandlimited and the size of the hologram is large enough to
cover the whole spectrum, then we may drop the mask
function. Thus (1) becomes

Hs(:) = [H(u)-f% comb (é%)] * rect(i%) 3)
where
comb(u) = %;G(u-n) o (4)

“When this hologram is put in the filtering system we obtain

the impulse response hg(x) which is the inverse Fourier
transform of Hs(u)

hS‘jx) i ’-I{Hs(u)}

- [h(x) * comb(cux)] - (Su)sinc(Sux) (5)
or
b0 = [ Thex-£] stne(sun) (6)
s z; Su

The total output 1is a displaced series of impulse
responses of the form h(x), weighted by a sinc(6ux) factor
as shown in figure 2. Notice that the higher diffraction
orders fall on the zeroes of sinc(Sux) functions and
therefore are strongly attenuated. 1In general, these higher
order responses can be neglected and the whole image plane
is available. Therefore the size of the object is no longer
restricted and the sampling interval of the filter is
determined by the extent of the impulse response x rather
than by the extent of the object x,. We need

n
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1
ba < 2= (7)

However, to properly eliminate the higher order responses,
we require the higher order responses to be concentrated

around the zeroes of the sinc(Sux) function and du is
generally smaller than the requirement imposed by (7).

If the higher order responses cannot be neglected, the
sampling rate must be much higher. To avoid overlapping
between adjacent orders we require

1
su > *nt% (8)
Generally X is much smaller than x, 8o this condition
becomes
1
et (9)

The sampling interval is determined by the extent of the
object rather than the impulse response.

To further reduce the intensity of higher diffraction
orders, we may use a smoother microdensitometer plot. For
example if a simple linear interpolator is used then the
impulse response becomes

h, (x) = [§h(x-6—ki)] sinc? (sux) (10)

Additional sidelobe reduction is achieved by the
sinc ?( bux) factor. Basically this problem is similar to the
apodization problem in which a proper window is used in
order to reduce the sidelobes. However these different
profiles may be difficult to implement by optical plotting.
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Besides the reduction of the sidelobes the sinc
function also modifies the impulse response slightly due to
the modulation near the peak of sinc(gux), but this effect
is small. If desired, the function h(x) could be
premultiplied by a window function correction term. The
transform of

h'(x) = sranti Ix] < x /2 (11)

could be plotted so that h(x) would appear correctly. This
modification also increases the intensity in the higher
diffraction orders. However this effect is small due to the
fact that high diffraction orders are strongly attenuated by
the zeroes of the sinc function as illustrated in figure 2.

To achieve on-axis complex operations, several new
technigues have been proposed. The most straightforward
method is to plot the amplitude and phase of the transfer
function separately. The phase plot is bleached and then
superimposed on the amplitude plot. The registration
problem can be simplified by plotting grating patterns
outside the aperture. The Moire fringes produced by these
patterns can be used for alignment. The sandwich of the two
holograms is then permanently fixed together.

Other on-axis holograms dincluding kinoform (1] and
ROACH (2] have been used. Kinoforms are made by discarding
the amplitude of the transform of a diffused object. Due to
the lack of amplitude information, degradation occurs in the
reconstruction. Besides using a random phase diffuser or
deterministic diffuser (3] to even the spectrum, several
iterative methods [2,4] cﬁm be used to achieve a flat
spectrum. These methods are convergent in general, however,
we do not expect to get perfect reconstruction in a finite

.

-156-




— oy — - —

number of steps. Therefore instead of discarding the slow
amplitude variation of the spectrum, we may implement it as
a sandwich hologram. Since the slowly varying amplitude has
a low dynamic range, the limited dynamic range of the film
is no 1longer a problem. The ROACH stores amplitude and
phase information on different layers of the color film.
Theoretically it is a per fect filter without any
registration problems. However it suffers from the 1low
space-bandwidth product.

A two-kinoform system has been proposed [5] which sums
up the responses due to two kinoforms. Therefore the light
efficiency is improved while the correct amplitude
information is preserved. Suppose the amplitude of the
transfer function is normalized to unity, then each vector

Aeje in the unit circle can be decomposed into two vectors
with lengths of 1/2 so that

v - cos” 1A 0<y<?¥ (13)

This decompositon and the optical set up have been shown in
figure 1 and figure 2 of reference 5 except the circle
should be a unit circle.

Similar ideas have been discussed by Severcan [6) and
Shmarev [7]. Severcan has discussed a two-channel phase
only filtering system. In the two-channel phase only
filtering system he used a grating to modulate the input
signal into two higher frequency channels. Two filters
corresponding to the two kinoforms used are placed in these
channels. To extract the desired output, one requires
another grating and low pass filter in another imaging
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system. This system has diffraction efficiency of 66% and
suffers from the requirement of very accurate alignment of
the second grating. 1In the on-axis phase only filtering
system, he plotted the phase only function side by side in a
cell. Upon reconstruction the noise due to the parity term
can be neglected for the zero-th diffraction order, however,
this noise term dominates in the first diffraction order.
To get useful results we have to either 1limit the object
size or increase the sampling rate for the impulse response.

In a recent paper [7] Shmarev discussed a similar
kinoform system using a balanced grating. However he
decomposed the vector into two unit vectors, thereby
reducing the 1light efficiency by 50%. The use of the
grating further reduces the intensity of the output.

In general, there are many ways to decompose a vector

in the unit circle into two constant vectors. A vector Aeje
in the unit circle can be written as

aed® - B [I (O 4 eI (0-9] 0<Ac<1 (16)

where

v = cos! (A/n] n>1 (15)

In the two-kinoform system n=1 and the results are
egs. (12) and (13). Shmarev uses n=2 and obtains

A.j@ - '.1 (“*) + ‘J(o"b) (16)

where

v = cos~1a/2 Jeve} an
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In the set up shown in figure 2 of reference 5, if both
channels have the same intensities, then every decomposition
for a particular n would give the correct vector except a
constant factor. For example n=2 results in a vector with
half of the magnitude of the vector resulted from n=l.
Light efficiency is therefore reduced for n>l1. Furthermore,
for larger n, V¥ varies over a smaller range as illustrated
by eq.(17). For computer generated holograms this means
more quantization levels in order to obtain the same amount

of accuracy. Therefore it is Dbetter to use the
decomposition with n=1.

When n=1; the angle V is related to amplitude A by

A= cos ¢ 0<v<3x (18)
Its derivative is given by

A' = ain ¢ 0O<v<y (19)

For a computer generated hologram, ¥ is quantized to a
certain level E and the amplitude becomes A=cosy rather than
A. The derivative of A is an increasing function with the
minimum at y=0 and the maximum at y=rn/2. Equivalently, the
same amount of guantization error in y results in small
error in A when A=l (y=0) and larger error in A when A=0
(V=m"/2). Therefore we can conclude that the phase coding
technigues can be applied here to even the spectrum and
therefore to reduce the quantization error.

In the above analysis the intensity of the impulse
response is of main concern. We can thus take advantage of
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allowing the phase of the impulse respcnse to be arbitrary
in order to obtain the desired transform distribution. One
particular application is the continuous display of the
discrete data (5]. The interpolators used for these
purposes are separable in general. As a matter of fact, the
separated functions have the same form. Therefore phase
coding can be done in one dimension and the final result |is
the product of two one-dimensional functions. If Hirsch's
method (1] is used for phase coding of an N x N picture with
m iterations, the number of multiplications needed is

N, = 2m - 2N’logh? = 2N(2m - 2NlogN) (20)

When the function is separable, the number of
multiplications becomes

N, = 2m - 2NlogN + N’ (21)

If m is large, the second term of N? can be neglected. The
computing time is then reduced by a factor of 2N. In fact
the N? operations are simply additions for kinoforms.

Although the phase coding methods have significantly
increased the light efficiency and reduced the guantization
error, the phase associated with the impulse function tends
to be irregqular. This might result in ‘'built-in speckle’
noise even if incoherent processing is wused. Future work
will include the study and implementation of other phase
coding methods which would result in less noise.
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3.7 optical Pseudocoloring of Spatial Frequency Information
(Suppor ted by NSF Grant ENG-76-15318 and AFOSR under
Contract AFOSR-77-3285)

Julian Bescos and Timothy C. Strand
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Introduction

The use of pseudocolor tc improve the information
transfer from a display to the human observer is well
established. Although 1its potential applications are
numerous, pseudocolor has to date been used almost
exclusively to encode image intensity variations. Another
application that has been considered is to encode variations
in spatial frequency content of an image by pseudocoloring
in the Fourier transform domain [1]. Although this showed
great promise for various applications such as texture
analysis it was never actively pursued. The reason for this
is the difficulty and expense of implementing Fourier domain
pseudocoloring in a digital system. This is because it
involves one forward two-dimensional Fourier transform,
followed by the generation of three color filter planes each
of which must finally be inverse Fourier transformed to
generate the final color image. All of this is very time
consuming on a digital computer. However this entire
process can be very easily implemented optically. The basic
idea is to have a spatial filtering setup which uses a
multi~color filter in the Fourier plane to encode different
spatial frequencies with different colors. Such a system
can be developed using coherent, incoherent, or partially
coherent illumination. Preliminary analysis indicates that
this 1is one application where a partially coherent system
can be used to particular advantage, combining the best
features of coherent and incoherent systems without many of
the disadvantages of the respective systems. 1In particular,
a properly designed system using partially coherent
illumination will result in a system that combines good
chromatic differentiation of various spatial frequency
components with excellent signal-to-noise ratio
characteristics.

In the following section we present a theoretical
analysis of a Fourier plane pseudocolor system with
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partially coherent illumination and study the effects of
going to the coherent or incoherent limits.

Theory

Although theoretical analyses of partially coherent
filtering systems are straightforward in concept, the
resultant calculations are usually intractable for any
general treatment. However if enough restrictions are
placed on the system, a tractable problem can be found. In
this section we wish to outline the analysis of a system
which is admittedly very restricted, but which gives results
which are easily understandable and which offer at least a
qualitative explanation of the experimental systems
described here.

The system we wish to analyze is the one-dimensional
system shown in figure 1. Two-dimensional analysis does not
alter the results in essence but makes the evaluation quite

cumbersome and less transparent. The source will be
considered to be spatially incoherent with a temporal
spectral distribution which can be approximated as three
monofregquencies vl-c/xl, vz-c/A2 and v3'C/A3 which we will
refer to as color 1, color 2 and color 3 respectively. The
source is assumed to have a uniform intensity over the

region -y < u < ug.

The object we will consider has the following amplitude
transmittance (independent of illumination wavelength)

ug(x) = Ag + A) cos(2mupx) (la)

where Ao, Ai, and e are real constants.
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Thus the intensity of the ocbject is

2 “% A3 i ok
Io(x) = Ao + —; + ZAOAI cos(Zﬂuox) + E— cos ( Thgx

In the pupil plane we have basically three independent

filters, one which transmits only in the spectral region of

vy (color 1), one which transmits only at 2} (color 2) and
one which transmits only at Vg (color 3). These filters
have the following binary transmittances for colors 1, 2 and
3 respectively (see figure 2):

£1(u) = r‘Ct(Z%Z) (2a)

£a(u) = rect(z%:)(l-rect(aﬁ—)) (2b)
c

£4(u) = rect(E%-)(l—rect(z%—)) (2¢)
e c

where

1 Lf -u, < w2 ng

c 0 otherwise

The color 1 filter fl is a low pass filter with cutoff
frequency Mo where as the color 2 and color 3 filters are
high-pass filters with the cutoff frequencies Zuc and 3uc.

Here u represents a spatial frequency variable. The

corresponding variable in the physical system is x where
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xl-ku/xj, i.e. u must be scaled by the appropriate
illumination wavelength Aj.

For a upatially' incoherent and quasimonochromatic
source, we can write the Fourier transform of the image
intensity in color j as follows [2]:

I,(2) = I I fj(u')fgfu'-u)v(u")v*(u"-u)s(u'-u")du'du" (3)

where * denotes complex conjugate, S=kug rect(f%—) is the

8
source intensity and v is the Fourier transform of the
object

v(u) = ¢ I u(x) exp(-2ripx)dx

(]
From eq. (la) we see that

v(u) = ¢ I (A0+A1c082nuox)exp(-2wiux)dx

A
- c[Aoc<u>+~}(s<u-uo>+s(u+uo>)] ()

Substituting eq.(4) into eq.(3) gives us an expression for
the Fourier transform of the intensity of the color j. If
one assumes the source intensity § and the filter function
fj are symmetric, the expression simplifies to the following
(vhere constant factors have been dropped):

84 (ug)
I, = oy Cug) 6+ [su-ug)+6 (utug)]

(ugy)
4-3-510—[6 (u-Zuo)H(u+2uo)] (3)

The coefficients are defined as follows
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- A
ay(ug) = ?Aoiz I lfj(u')lzs(u')du'+(l ;

2
|

)

[ g5 gmutau

| : |‘1|2 (6a)
= A Foj<°>+( - )Foj(uo)

where Fgy(Yo) is the convolution of the source with the
filter intensity tranamission IfJI2

*
By (ug) = 2Re[AAT [ £;(u)S(u)E] (uu'ydu']

* (6b)
= ZRe[AOAlFlj]
where rlj is the filter function multiplied by the source

function convolved with the (complex conjugated) filter
function.

(‘AI,Z g "ye¥ L ’ '
Yj(uo) o —"_2-— I fj(u )fj(zllo-ll )s(uo‘u )du

(6c)

2
[Aq ]
"( . )sz(uo)

From this we can write an expression for the intensity of
the three color images as

1,(x') = ] T, (wexp(-2riux’)du

(7

- aj(uo)ﬂj (uo)co-(Zwuox’)ﬂj (uo)co-(‘muox')

It should be remembered that the expressions for “j ’
BJ. and Yy are valid only for the particular input object we
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have considered. Keeping this in mind we will refer to Oy
Bj, and Yj as pseudo-transfer functions for each of the
three components of eq. (7). In figure 3 we plot these
pseudo-transfer functions for the filter described by eq. (2)
and for three different source sizes. Figure 3a represents
the limiting case as the source size approaches zero,
i.e. the coherent illumination limit. In this case we see
that there is always a certain bias of color 1 in the image,
but otherwise the color of the image is going to be purely
color 1, 2, or 3 depending upon the spatial frequency M, of
the object. Thus we would expect a test target made up of
sinusoidal gratings to have a highly saturated color image.
The problem with such a system is that it is subject to all
the noise problems of a coherent systems such as speckle and
diffraction from dust, etc. Figure 3b shows the
pseudo-transfer functions for a partially coherent system
where the image of the source in the filter plane is half
the size of the central filter (color 1). Although there is
some overlap of the pseudo-transfer functions for different
colors, in general, this system is seen to also yield fairly
saturated colors. It is important to note that wunlike the
coherent system, this partially coherent system yields
slightly different colors and varying degrees of modulation
for two gratings at different but approximately equal
frequencies. Finally, figure 3c shows the pseudo-transfer
functions for the 1limiting case as Mg becomes very large,
i.e. spatially incoherent illumination. 1In this case Bj is
the standard modulation transfer function (MTF) for the
incoherent imaging system. “j and Yj follow directly from
Bj. The important thing to note is that there is a constant
bjias term with equal contributions from all three colors
(independent of uo). This implies poor saturation in the
color image of a sinusoidal grating. Thus in many respects,
the partially coherent system combines the good gqualities of
both the coherent and incoherent systems, specifically good
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saturation with low noise and good color differentiation of
adjacent spatial frequencies. It should be noted that, as
can be seen from the plots of Bj' the fundamental frequency
term tends to be eliminated in the coherent and partially
coherent systems. This leads to false imaging effects for
these systems which can be disturbing in certain
applications.

The color saturation in the image is generally high as
long as the image of the source is confined to one color in
the filter plane. Thus a source intensity distribution
described by egs.(2a), (2b), or (2c) would give good
saturation with those filters.

Conclusions

We have discussed an optical system for color encoding
of the spatial frequency content of an image. A theoretical
analysis is given for the general partially coherent
illumination case. Preliminary experimental work has
verified the theoretical results. This work will be
reported on later.

It is felt that this system could have several
significant applications in image analysis. Its application
to texture analysis, for instance, seems particularly
promising.
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4. Smart Sensor Projects

This section represents the smart sensor phase of
research funded during the past six months. Two circuits
have been fabricated for CCD analog near focal plane
processing to implement a variety of front end image
processing functions. The first circuit implements the
Sobel operator on an image. This represents a nonlinear
spatially invariant processor. The second circuit is
designed to implement both nonlinear spatially invariant as
well as variant processes. Both circuits have been

fabricated. The Sobel circuit has been tested with success,
(see accompanying section) and the second circuit is soon to
experience testing.
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4.1 Charge-Coupled Technology for Image Understanding

Graham R. Nudd

Principal participants in this contract during this
reporting period were Jerry Erickson, Paul Nygaard,
Dale Sipma, Gary Thurmond, and Graham Nudd.

Three principal tasks have been undertaken since the
last report, including:

the fabrication and testing of Test Circuit I;

the detailed design, layout and processing of Test

Circuit II; and

the design and construction of our test facilities.
We have made significant progress in each of these areas.
The first test circuit is now operating on test images
generated on the USC PDP-10 computer, and the photographs of
the processed data are included here, together with the
detailed test results. The second test circuit has now been
designed and initial circuits are currently available.
Details of this are also included. Finally, as the testing
has progressed, we have made considerable modifications to
our test facilities to provide more flexibility and also
added a good deal of software to interface between the
microprocessor, the PDP-10 and the microprocessor and the
CCD circuits. 4

Test Circuit I

Details of the first test circuit, a three by three
Sobel edge detection circuit, have been given in the
semi-annual report dated April 1977. The basic algorithm
operates on the nine picture elements shown in figure 1 and
provides the output
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S(e) = | (at2b+c) - (g+2h+i)| + | (at2d+g) -

(1)
(c+2f+1) |

It performs this by the combination of two circuit elements,
a two-dimensional CCD filter and an absolute value circuit
as shown in figure 1. The two dimensional filter operates
on three parallel 1lines of charge, representing three
adjacent lines of image data and forms the four outputs:
(a+2b+c), (-g-2h-i), (a+2d+g), and (-c-2f-i). 1t does this
by nondestructively sensing the charge using a floating gate
structure with two basic gate sizes tc provide the
two-to-one weighting ratio. Pairs of outputs are then
combined to form the x and y components of the Sobel
opérator

Sx = (at+2b+c) + (-g-2h-1i); and

S)’ - (a+2d+8) + (-C-Zf-i) (2)

respectively. Finally these two components are used as
inputs to the CCD absolute value circuits which forms (Sx
and Sy) prior to addition, providing the full Sobel
operation. Two absolute value circuits have been included
on Test Circuit I as described in the April 1977 semi-annual
report. A schematic of the first circuit 1is shown in
figure 2. It consists of a modified Tompsett input with two
input gates Bl and SIG. A reference signal, equivalent to
the zero level of the absolute value, is applied to Bl and
the 1input signal is applied to S1G. When the input is more
negative than the reference, Bl, a potential well of
capacity (Bl - SIG).shltox. coulombs is formed where A is
the gate area, tox is the oxide thickness and ¢ is the
dielectric constant. Hence, when the diffusion is pulsed,
this amount of charge collects under gates B2 and F2. If,
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however, SIG is positive with respect to the reference, a
charge (SIG - Bl)-gA/tox coulombs collects under electrodes
FZ2 and SIG. Hence 1if the area of all the electrodes are
equal, a charge eguivalent to | (SIG - Bl)-gA/§0x| is
generated in either case and an absoclute magnitude operation
is performed. By having two such circuits in parallel, the
addition shown in eqg.(l) 1s performed and potentials for
this circuit are shown in figure 3.

Figure 2b shows a second absolute value circuit which
requires two parallels to perform a single operation. The
potential profiles through the two channels are shown in
figure 4. The technique relies on any voltage change in
Vsig changing the potential profile under the SIG electrode
and spilling charge = AvsigeA/tox through only one channel.
For example, as shown in the figure, a positive change in
Vsig will create a charge flow in the top channei only.

A photograph of the processed circuit is shown in
figure 5. It consists of a two phase n-channel CCD
structure with approximately 3 x 25 stages in the array. 1In
operation charge proportional to the picture intensity in
three adjacent lines is clocked through the three channels
and outputs corresponding to the Sobel operator are formed
on the absolute value circuit output shown beneath the 2D
filter. Because the charge 1loss per stage of these
circuits can be made very low, less than one part in 107,
other processing functions have been included by adding
circuits in series. In this case, a high-pass temporal
filter, a two~dimensional Laplacian operator and an aperture
corrector have been included.

During this period of the contract, the initial testing

and performance analysis of the circuit has been per formed.
The full masking process consists of eight levels and two
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omissions have been encountered on the original masks which
have now been corrected to provide working parts. The first
mask error was an open circuit on one of the clock lines,
¢2, which prevented charge from being properly clocked
through the full array. Initially attempts were made to
wire bond directly to the clock line, but this proved to be
very difficult and the results were unreliable, and a new
mask was purchased. Fortunately this error occurred on the
upper level and, since we had other partially processed
wafers, we were able to provide corrected circuits in about
six weeks. A later problem occurred on absolute value
circuit 1 which prevented the x component of the Sobel from
operating. This was an unconnected diffusion which
eliminated the charge source to the Tompsett input. Here we
were able to wuse a wire bond which provided satisfactory
operation, and the full Sobel circuit is now operating.
These circuit problems, which are to be expected in the
initial runs of circuits of this complexity, have caused two
to three months delay in our original plans. We have now
however established the operation of the initial concepts,
and a brief outline of the test procedures are included.

The circuit performance has been evaluated with the
computer controlled test facilities described in a later
section. In concept, image data, either from the USC-IPI
data base or from specially prepared test patterns, is
accessed via a standard 30 characters/second data 1link and
stored in the random access memory (RAM) of the
microcomputer controlling the test set-up. Special purpose
CCD drivers and clocks have been built to drive the CCD
circuits, request data from the RAM and return processed
data back to the computer. Details concerning the timing
and data flow are given in that section.
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The initial test for the circuit was to ensure that
charge was being clocked through the 2D filter from the
Tompsett input. Accordingly, the voltage in each input gate
for the three parallel arrays was varied as the outputs on
Sobel 'x' (Sx) and Sobel 'y' (Sy) were monitored.

In this way, the effective operation of the top and
bottom channels can be monitored using a dc voltage. It
should be noted that the gate connection on the center
channel requires a time varying waveform to test its
operation. The output from the three floating gates on the
top channel 1is shown 1in figure 6a. Note that here three
gates with weightings 1/2, 1 and 1/2 are connected so the
effective output has a weighting of 2. Also since the
weightings are all positive, the output has the same
polarity as the input signal. A schematic of the waveform
is provided in figure 6b for reference. The linear range of
this operation was from +5.5V to 7.3V. The charge storage
for a single gate is given by

% = Cox's (3)
where C,. = eA/t,, is the oxide capacitance. In our case,
830 um? and hence C__ = 0.27 pF, resulting in a charge
storage of 0.54 x lo'lzg:ulombs for a 2 volt gate swing.
This is equivalent to 3 x 106 electrons. The noise
associated with just filling this well is Qn = /if'f;;,
which is equivalent to 690 electrons. In practice, other
sources of noise exist, associated with the trapping states
and thermal generation, etc., which might increase this
number to approximately two or three thousand. Even so, a
dynamic range at the input in excess of eight bits should be
attainable.
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Similarly, the operation of the lower channel is shown
in figure 7a. Note the weighting on this channel
corresponds to -1/2, -1, -1/2 or -2 and hence the polarity
change. The 1linear range for this circuit is from 5.2V to
7.1V. Figures 6 and 7 indicate the effective clocking of
charge through the channels. The desired weightings can
only be analyzed using a time varying signal. Because of
the speed 1limitation on the INTEL 8080A microprocessor, a
data rate of approximately 5 kHz was used in these tests.
This avoids the use of direct memory access, which will be
incorporated in the next phase of the program.

The appropriate weightings for the Sobel x and y
components are illustrated in figure 8, together with the
impulse response for each channel when measured at both the
x and y outputs. The time dependent outputs for a single
impulse are shown in figure 9, from which it can be seen
that there are three functions of interest; Sobel "x",
channel 1 and 3, and Sobel "y". The output waveforms for
channels 1 and 3 at Sobel "x" and channel 2 at Sobel "y", in
response to a single impulse of one picture element duration
are shown in figure 10. It can be seen that the form of the
weightings is current although the accuracy is not

-sufficient to provide operation equivalent to eight bits.

We believe that the loss of accuracy is due to incomplete
charge transfer through the full array and we are currently
investigating techniques to improve this. In particular,
one of the subseguent circuits in the array (the temporal
high pass filter) has been designed to operate with a
clocking waveform which is slightly shifted in phase from
the prime clocks, and adjustment of these clocks shouldxlead
to better transfer. At present, we are operating all clocks
from two phases. ~
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To provide the full Sobel output, the absolute
magnitude of each component must be taken and the output
summed, using the CCD absolute value circuit described
above. An example of the operation of this circuit is given
in figure 11. Here only the Sobel "y" component is used for
illustration and the input to the array consists of an
impulse of one pixel duration. This results in a positive
going signal, representing the transition at the leveling
edge of the pulse, zero output when the discontinuity is at
the center of the array (i.e., at 1location "e") and a
negative signal corresponding to the transition on the
trailing edge, as shown in the upper trace. The positive
and negative pulses in effect 1locate the edges of the
discontinuity. The Sobel operator, however, requires that
both edges have the same polarity. This corresponds to the
output shown in the 1lower trace, where both signals are
shown as negative going outputs. The polarity is merely
convention and the negative outputs are a direct result of
an n-channel device operating with electrons as the
carriers. The form of this 1lower waveform corresponds
precisely to the full Sobel algorithm for a single
discontinuity. In terms of an optical image, the input
would correspond to a vertical grid, each element having a
width equal to one picture element, and spaced at the pulse
repetition interval. The output is equivalent to a grid
pattern of double lines representing the edges of the
original pattern.

The two components of the Sobel operator have been
tested using patterns with both vertical and horizontal
symmetry. Specific examples of this are given in figures 12
and 13. 1In figure 12a, vertical grid of lines each of which
is one pixel wide is shown as the unprocessed image. The
processed image (figures 12b) consists of pairs of vertical
lines spaced by a single picture element width and represent
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the output from the CCD Sobel circuit operated at
approximately 5 kHz. For comparison, the computer generated
Sobel is shown in figure 1l2c. Figure 13 shows the
corresponding results for a horizontal grid, thereby testing
Sobel "x".

These simple patterns serve to verify the CCD Sobel
operation and provide data for the circuit analysis. Our
present work in this area is concentrated in three specific
areas:

testing the circuit on a more extensive base;

increasing the dynamic range and speed of the present

devices, and providing a more rapid data transfer
between the microcomputer and the CCD circuits.

Test Circuit I1I

The aim of the second test circuit is to investigate
the possibility of performing adaptive algorithms; in this
case, based largely on the local mean. Again a kernel of
three by three picture elements is used and the five
algorithms included are:

Sobel Edge Detection

S(e) = 1/8(| (a+2b+c) - (g+2h+1) |
+ | (a+2d+g) - (c+2f+1)))
Low Pass Filtering

Fy=19(a+b+c+d+e+f+g+h+1)

Unsharp Masking
’USH = (1-a)8(1,3) + oF.
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Adaptive Binariser

¥, - ’1 Fy<e
OFy>e
Adaptive Stretching
2 Min |e, r/2| Fy < r/2
a ” ,2 Max | (e-r/2), 0| Fy > /2

Because of the complexity of building all of these functions
in a single circuit, a modular approach has been employed as
shown in figure 14. Here each circuit 1is built as a
separate unit on a single chip and the full operation can be
obtained by using either wire bonds at the crystal surface
or coaxial interconnects. The design rules for thi# circuit
are given in Table 1 and, where appropriate, the per formance
of the circuit elements has been computer simulated using
the "SPICE" simulation programs. The detailed design and
layout of this circuit is now conpleled and the first lost
has been processed. A photograph of the processed parts 1is
shown in figure 15. Schematics of each circuit concept were
included in the previous semi-annual report. We anticipate
that preliminary testing and performance evaluation will be
completed in the next two months. The circuits themselves
will be bonded in forty-eight pin dual-in-line packages
identical to that used for Test Circuit I and it should be
possible to use the drivers and computer interfaces already
developed. However to achieve the adaptive processing with
all circuit elements, it will be necessary to initially
provide external coaxial interconnects between several
break-out boxes. Then, as testing proceeds, internal bonds
at the chip surface will be employed to enable all functions
to be obtained from a single circuit. We anticipate that
further development of the peripheral circuitry such as
clocks, rest and diffusion pulses necessary to operate this
circuit will be relatively minor.
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STARTING MATERIAL 10 OHM-CM P-TYPE (100)
N-CHANNEL 1000 R GATE OXIDE WITH SELF-ALIGN IMPLANT

; LAYOUT RULES (MILS)
MIN, WIDTH SPACE

CHANNEL STOP (CS) P+ DIFFUSION : .10 :

SOURCE/DRAIN (SD) N+ DIFFUSION .10 .3 70 CS

GATE OXIDE (T0) .10 .025 INSIDE SD
POLYSILICON 1 (PS1) .25 125 T0 PS1

PS1 .1 OUTSIDE SD (WHEN SA IMPLANT USED)
PS1 075 INSIDE SD (NON SA)
PS1 ,125 OVERLAP CS 1 e
POLYSILICON 2 (PS2) .25 125
PS2 .1 OVERLAP PS1
THRESHOLD SHIFT (TS)  UNDER PS2 IN CCDS
| IMPLANT, BORON |
} | SELF-ALIGN IMPLANT (SA) g
| CONTACT (CT) 2 % 12
CT .125 INSIDE PS1
CT .15 INSIDE PS2
CT .10 INSIDE SD
CT .10 OUTSIDE PS1
rT .15 OUTSIDE PS2
METAL (AL) .25 15
AL .15 OVERLAP CT 4B
PAD 4,0 x 4,0 7.0 CENTER TO CENTE

DEVICES: L = .30, MIN W = ,2

ccD: PS1 L=.35 GAP = ,175
PS2 L=.3/5 W=24

1,05 MILS/BIT

Table 1. Design Rules for Test Circuit II
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Figure 15. Photograph of test circuit |l (size approximately 190 x 190 mils
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Development of Test Facilities

In addition to the development of Test Circuits I and
II, we have made considerable progress with our test
facilities, and most of the necessary equipment has been
designed and built. The CCD test facility has been set up
to accomplish two main objectives:
1. Provide the necessary signals, dc levels, and
adjustments for functionally testing the
operation of the CRC~111 and CRC-115 chips.
2. Demonstrate the operation of these chips on real
images.
The following tasks have been done to accomplish these
objectives:
- A box was built to hold the 48 pin chips and connect
their leads to 48 bnc outlets.
- Two boxes were built to provide 12 independent,
adjustable dc levels.
- A "CCD driver” box was built to provide the necessary
periodic waveforms required for operating the chips.
These waveforms include two clocks, two resets, two
diffusion signals and clocking signals. These signals
have adjustments for gain, offset and timing for
optimizing the operation of the chips.
- The microprocegsor (IMSAI 8080) was interfaced with
the "CCD driver"” box so that it can output three analog
channels and read in one analog channel synchronously
with the "CCD driver"™ box. Thus data in computer
memory can be formatted into three parallel output
channels, fed to the CCD chips, and the resulting
operation (Sobel, median, etc.) can be read and stored
back into computer memory.
- A display with 16 grey levels and a 128 x 128 pixel
resolution was built for the microprocessor. Each
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128 x128 x 4 bit picture occupies 8K of 8080 memory.
Pictures and programs are stored permanently on
cassette tape.

- A means of transmitting a picture from the USC time
sharing system to the microprocessor was developed. To
accomplish this, a version of the Scene Analysis System
used by Hughes has been modified to contain a command
which will encode a picture into ASCII and output it on
the terminal. The microprocessor then intercepts the
picture as it is transmitted.

- Several programs for the microprocessor test
facilities have been written. These include the

following:

% A. CALIB: This program is used for calibrating the
% % input and output analog channels of the

% microprocessor.
é B. BLOCK: This program does the Sobel operation on
§ a 3 x 3 block of data using the CRC-111
i chip.

C. PACK2: This program intercepts a 128 x 128 x 4

bit picture from USC.
D. SOBEL: This program does a Sobel operation on a

128 x 128 bit picture using the CRC-111
chip. The results are displayed on the
128 x 128 x 4 bit display.

E. CSOBL: This program calculates exactly the
Sobel operator on a 128 x 128 x 4 bit
picture. The results are displayed on
the 128 x 128 x 4 bit display and can be
compared with the results of program
SOBEL.

A block diagram of the test facilities are shown |in
figure 16. Also a number of test images have been generated
to provide data of the circuits per formance.
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Conclusion

Significant progress has been made in three areas: the
fabrication and test: 7 on Test Circuit I, the design and
fabrication of Test C:.. it II, and the development of the
computer based test f cilities. At the present time, Test
Circuit I has been tested on a number of geometric test
images providing proof of concept. More extensive tests
will continue on this circuit in the next period. The
detailed design, layout and fabrication of the second
circuit is now complete (as shown in figure 15) and
preliminary evaluation has begun. The test facilities have
expanded to provide the appropriate interface between the
USC PDP-10 and our CCD circuits and provide all the
necessary clocks and waveforms to operate both test
circuits. During the next period, we expect to complete the
testing of both circuits and provide facilities to operate
them at real-time (TV) rates as well as investigate new
concepts for our next circuit development.




S. Recent Ph.D. Dissertations

This section includes those dissertations completed
since the 1last reporting period. The ones listed here
reflect results in two areas of our image understanding
project. The first report describes a joint
detection-estimation approach to boundary estimation. The

methods of nonlinear estimation theory are applied to the
detection of objects in extremely poor signal-to-noise ratio
images with surprisingly good results. The second report
describes the subject of image segmentation by clustering.
This work utilizes the methodologies of pattern recognition,
clustering, principal components analysis, feature selection
and image pre-processing to automatically segment images
into homogeneous regions.

Results of the above two research topics are described
in detail in USCIPI Report 760 and USCIPI Report 750,
respectively.
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5.1 A Joint Detection-Estimation Approach to Boundary
Estimation

Simon Lopez-Mora

The estimation of object boundaries based on noisy
observations is considered in the context of joint detection
and estimation.

The images are expressed as replacement processes and
the boundaries modelled in terms of geometrical parameters
associated with the object. The images studied bhave two
textures, object and background, characterized by their
first and second order statistics. A boundary processor
consisting of optima estimator and detector is derived, for
an appropriately chosen cost function. Differences between
the cost function and resultant processor with other costs
and estimator-detector pairs used previously in other
applications 1is indicated. The optimal solution involves a
nonlinear estimator and a detector with a variable threshold
dependent on the estimator output. '

Further, because of information restrictions imposed on
the estimator that alleviate its computational requirements,
a recursive, easily implementable algorithm, updating only
the first two moments is derived, and subsequently used to
evaluate the estimate as well as to perform detection.

Experimental results are {illustrated. Of particular

significance is the applicability of said processor under
very low signal to noise ratio conditions.
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5.2 Image Segmentation by Clustering

Guy B. Coleman

The segmentation of imagery into homogeneous regions
using digital techniques has been a goal of researchers for
the past several years. Pattern recognition approaches
using mathematical models bhave achieved results which are
only partially satisfactory. The 1large dimension of the
pattern space and the quantity of data involved in the
digital representation of images are in part responsible for
the limited applicability of these approaches. Other
shortcomings are related to the demands for data with which
to train the classifier.

Approaches based on linguistic models have also been
tried, again with results which are partially satisfactory.
The most serious shortcomings are related to the performance
of these approaches in the presence of noise, a phenomenon
with which man has learned to function effectively.

This dissertation describes a procedure for segmenting
imagery using digital techniques and is based on the
mathematical model. The classifier does not require
training prototypes, that is, it operates in an
"unsupervised” mode. The procedure is general in that the
features most useful for the particular image to be
segmented are selected by the algorithm. The algorithm
operates without any human interaction.

The features used are based on brightness and texture
in regions centered on every picture element in the image.
To perform an elementary pre-classification of local
regions, a filter based on the mode of the local area
histogram is proposed and used in segmenting images.
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The basic procedure is a K-means clustering algorithm
which converges to a local minimum in the average squared
inter-cluster distance for a specified number of clusters.
The algorithm iterates on the number of clusters, evaluating
the clustering based on a parameter of clustering quality.
The parameter proposed is a product of between and within
cluster scatter measures, which achieves a maximum value
that 1is postulated to represent an intrinsic number of
clusters in the data.

It has been impossible in the past to compare different

segmentations of the same image. A comparison measure based
on the joint histogram of the two segmentations is proposed

and examples of its use are presented.

It is within the state of the art to adapt the
segmentation procedure described hereir to operate in
hardware at television rates. A functional diagram of such
a system 1is presented, and estimates of the required
capacities are given.
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